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Abstract
Tuple pattern based retrieval is a language construct that matches a
tuple pattern against a set of tuples to retrieve components of those
tuples. This high-level abstraction allows programs to be written
more easily and clearly than otherwise. This paper describes a
clean and automatic method for transforming tuple pattern based
retrievals into efficient implementations. The paper also presents
two systems that implement the method, and describes success-
ful experience and experiments in generating efficient implemen-
tations for graph algorithms, program analysis, security, and other
applications.

1. Introduction
An ongoing and welcome trend in the evolution of programming
languages is the addition of support for higher-level data types
into the language proper. This integration provides the programmer
with a twofold benefit. When constructs for working with high-
level data types (such as sets and lists) are included in the language
proper, boilerplate code is eliminated and programs are easier to
understand. Such constructs also make operations on those data
types explicit, making it easier to develop techniques for their
efficient implementation. Including these constructs in the language
allows us to improve code readability while using transformations
to maintain or improve practical performance.

One such language construct is tuple pattern based retrieval,
the matching of a tuple pattern against a set or list of tuples to
retrieve components of those tuples. A tuple pattern consists of
components that are either expressions or unbound variables. When
a tuple matches the pattern, that is, when they are of the same length
and the values of the expressions in the pattern are equal to the
corresponding components of the tuple, then the unbound variables
in the pattern are assigned their corresponding components of the
tuple. This allows for simple but powerful queries over sets and
lists of tuples, inspired by how such queries are often written in
pseudocode.

For a language construct to be accepted, it should be at least
as efficient as the equivalent hand-written user code. Otherwise,
programmers will be faced with a choice between simple but slow
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code and efficient but complicated code. Tuple pattern based re-
trieval does not force this choice upon a programmer. We design
data structures that allow tuples matching a pattern to be efficiently
located, and we incrementally maintain these data structures when
the set or list they represent is updated. These data structures allow
us to retrieve a single matching tuple in amortized constant time,
and to iterate through all matching tuples in amortized time pro-
portional to the number of tuples matched. As the time spent at
each update to maintain our data structures is also constant, these
times are asymptotically optimal.

Finally, it is important to show that tuple pattern based retrieval
can benefit practical applications. To do this, we have developed
two implementations of tuple pattern based retrieval, and used them
to perform a number of experiments. These experiments show how
this new construct can simplify programming a variety of applica-
tions, in problem domains from program analysis to security policy
frameworks. For each problem, we give the size of a program writ-
ten using tuple pattern based retrieval, and the size of the program
translated into a language that does not support it. For several ex-
amples, we present the performance of programs translated in both
straightforward and optimal ways. In this way, we show that tu-
ple pattern based retrieval can lead to code that is both simple and
efficient.

We expand on these concepts throughout the rest of this paper.
Section 2 describes tuple pattern based retrieval, and how it can be
used as part of the while, if, and for statements of a language.
Section 3 develops a method for the efficient implementation of
this construct, and shows that the implementation is asymptotically
optimal. Section 4 discusses related issues. Section 5 describes the
tools we have developed to implement tuple pattern based retrieval,
while section 6 presents the results of our experiments. The final
section of this paper discusses related work and concludes.

2. Tuple Pattern Based Retrieval
This section introduces tuple pattern based retrieval. We first in-
formally describe the syntax and semantics as they are used in a
short example program. We then describe the syntax and semantics
precisely.

2.1 Example
An example of the use of tuple pattern based retrieval is given in
Figure 1, which presents a program that topologically sorts the ver-
tices of a graph. Apart from for, while, and if statements that
use tuple patterns, the language contains statements that add and
remove tuples to and from sets, as well as statements to read from
input and print output. It also includes a function that constructs
a new empty set. We represent tuples by comma-separated list of
components enclosed in parentheses. To easily distinguish expres-
sions from unbound variables in tuple patterns, we have underlined
all expressions used in tuple patterns.



1 read VERTICES, EDGES
2 INDEGREES = Set()
3

4 for v1 in VERTICES:
5 indegree = 0
6 for (v2, v1) in EDGES:
7 indegree += 1
8

9 INDEGREES add (v1, indegree)
10

11 while (v1, 0) in INDEGREES:
12 for (v1, v2) in EDGES:
13 if (v2, indegree) in INDEGREES:
14 INDEGREES remove (v2, indegree)
15 INDEGREES add (v2, indegree - 1)
16

17 INDEGREES remove (v1, 0)
18 print v1

Figure 1. Topological sort, written using tuple pattern based re-
trieval.

This example contains four statements involving tuple pattern
based retrieval. There are two for statements, on lines 6 and 12,
one while statement on line 11, and one if statement on line 13.
Since the block starting at line 11 is the part of the program that
actually computes the topological order (the rest of the program
being initialization), we discuss the first three statements in that
block in detail.

INDEGREES is a set of pairs, each of which consists of a vertex
that has not been printed yet, and the number of edges into that
vertex from other vertices that are the first component of a pair
in INDEGREES. Throughout execution, we maintain the invariant
that each vertex is the first component of at most one pair in
INDEGREES. The while loop on line 11 continues as long as there
is at least one pair in INDEGREES whose second component is zero.
The first component of the pair is then assigned to the variable v1.
In our example, this means v1 is given a vertex with an in-degree
of zero, a vertex that can be next in the topological order.

The purpose of the for statement on line 12 is to iterate through
all of the edges leaving v1. It iterates through tuples in EDGES with
a first component equal to v1, and assigns their second components
to the unbound variable v2. Each execution of the for statement it-
erates through each matching element at most once, which ensures
that each edge will be considered at most once.

Finally, the if statement on line 13 finds in INDEGREES a pair
whose first component is equal to v2, and assigns its second com-
ponent to indegree. The true block of the if statement executes
only if such a pair is found, which is always the case in this ex-
ample if the input is correct. In this case, the real purpose of the
if statement is to find the tuple matching the pattern.

One important thing to note about this example is that we
match against the second component of the tuples in INDEGREES on
line 11, and against the first component on line 13. This means
that while this algorithm could be implemented using maps, there
would have to be two maps corresponding to INDEGREES. Another
two maps would need to correspond to EDGES. Using tuple pattern
based retrieval, we halve the number of data structures and reduce
the amount of update code that needs to be written by the program-
mer.

2.2 Syntax
The syntax we use for tuple pattern based retrieval is given in
Figure 2. It consists of a retrieval clause, used as part of a while,

retr statement ::= (while | if | for) retr clause :

retr clause ::= tuple pattern in set expression

tuple pattern ::= ( component (, component)∗ )

component ::= expression | pattern variable

Figure 2. A grammar for tuple pattern based retrieval statements
in our pseudocode language.

if, or for statement. Each retrieval clause consists of a tuple
pattern, an in keyword, and an expression that evaluates to a set.
During an execution of tuple pattern based retrieval, this set is
known as the accessed set.

A tuple pattern consists of one or more comma-separated com-
ponents. Each component is either an expression that has all vari-
ables bound before the retrieval, or a fresh variable that is not bound
to anything before the retrieval, called a pattern variable. Pattern
variables may not be used in expressions that are part of the same
tuple pattern. Although our method as presented here does not al-
low nested tuple patterns, in Section 4 we discuss what would be
involved in adding them.

Retrieval clauses can be used as part of while, if, and for state-
ments. A retrieval clause replaces the entire condition of a while or
if statement, or the iteration clause of a for loop. When used as
the iteration clause in a for loop, tuple pattern based retrieval guar-
antees that each matching tuple is retrieved exactly once.

2.3 Semantics
The operational semantics of tuple pattern based retrieval can be
given in terms of binding sets. We describe what these binding sets
are, and how they can be computed for a given pattern and set. We
then show how they can be used to execute a retrieval as part of the
while, if, and for statements. Before we can do these, however,
we must first define what it means for a pattern to match a tuple, a
concept that we have used informally up until this point.

A tuple matches a tuple pattern if the tuple and pattern consist
of the same number of components, and if, at the time of the
matching, the value of each expression in the pattern is equal
to the corresponding component of the tuple. For our purposes,
equality here refers to structural equality or user-defined equality,
not equality of object identity. If there are no expressions in the
tuple pattern, that pattern trivially matches all tuples of the same
length. Since the value of the expression in the pattern may change
over the course of program execution as the variables that are used
change, a matching is only valid at a particular point in program
execution.

Using this definition, we can define binding sets. A binding set
is a set containing, for each tuple in the set matching a tuple pattern,
a map from the pattern variables to the corresponding components
in the tuple. Such a set could be computed by iterating over the
accessed set and performing the matching operation, if we were to
ever actually compute it. As a binding set involves matching, its
value corresponds to a particular execution of a retrieval.

When a binding set is computed, and how it is used, are deter-
mined by the statements in which a retrieval occurs. In a while or
if statement, a binding set is computed each time the condition is
evaluated. If this binding set is empty, then the condition is false,
and no variables are bound. This will cause the a while loop to ter-
minate, or an if statement’s else clause to execute, when present.
If the binding set is non-empty, an arbitrarily selected map is taken
from it, and the variables in it are bound to their associated values.



Such bindings are in effect until the end of the body of the if or
while statement, at which point they become unbound.

In a while statement, the fact that the binding set would be
recomputed each time the condition is evaluated means that the
loop continues as long as a matching element exists in the accessed
set. This property makes such a while loop useful for accessing a
workset. As the while loop would recompute the binding set each
time through the set, while loops are suitable for use with sets that
can be changed in the body of the loop.

A for statement has slightly different semantics. If imple-
mented using binding sets, each execution of a for statement
would cause a binding set to be computed once, before the first
iteration. The iteration then occurs over the maps in the binding
set, with the variables in each map being assigned their associated
values while executing the body of the iteration.

We impose on for statements the restriction that neither the
contents of the accessed set nor the values of the expressions in the
tuple pattern change over the course of the iteration. These restric-
tions are not overly burdensome, as they are similar to the prohi-
bition in languages such as Java and Python against changing col-
lections while iterating over them. They also allow us to perform
important optimizations, such as those given below. This restric-
tion may be enforced by the language using some combination of
program analysis and runtime checks, or it may be left as the pro-
grammer’s responsibility.

3. Efficient Implementation
As mentioned above, binding sets only exist as a way to give an
operational semantics of tuple pattern based retrieval. For tuple
pattern based retrieval to become a useful language feature, we
must find an efficient and practical implementation.

3.1 Local Implementation
Perhaps the most direct implementation of a for loop involving tu-
ple pattern based retrieval is one that intermixes the computation
of the elements of the binding set with the use of those elements.
Lacking a better name, we call this a local implementation. A local
implementation consists of iterating through each of the elements
of the associated set. For each element that is a tuple matching the
tuple pattern, the pattern variables are bound to their correspond-
ing elements in the tuple. The body of the iteration is then exe-
cuted with such bindings. This continues until all elements of the
accessed set have been exhausted.

while and if statements, are implemented similarly. For these
statements, however, the iteration is performed once for each time
the condition is evaluated, and the iteration terminates once a
matching tuple is found. If the iteration proceeds to completion
without a matching tuple being found, then the tuple pattern based
retrieval has failed. In this case, no variables are bound as a result
of the retrieval, and the condition is false.

1 for v1 in VERTICES:
2 indegree = 0
3 for (v2, tmp0) in EDGES:
4 if tmp0 != v1:
5 continue
6

7 indegree += 1
8

9 INDEGREES add (v1, indegree)

Figure 3. Local implementation of initialization.

An example of a local implementation is given in Figure 3,
showing the code that implements the initialization part (lines 4
through 9) of the example topological sort program in Figure 1.

The advantage of a local implementation is its simplicity. If one
was asked to implement tuple pattern based retrieval, by hand and
without regard to efficiency, something similar to a local imple-
mentation is what would likely arise. This method requires only a
constant amount of memory, and requires us to only modify the
statement containing the retrieval, without touching the rest of the
program. Its main problem is inefficiency. The cost of a single tu-
ple pattern based retrieval implemented using the local method is
proportional to the size of the accessed set, rather than the number
of elements in the set that match the tuple pattern. This can lead to
asymptotic slowdowns in common algorithms. These slowdowns,
while clearly undesirable, are occasionally accepted by program-
mers when rewriting for performance would unduly complicate the
code.

3.2 Bound-Unbound Maps
The inefficiency of a local implementation stems from having to
iterate over the entire accessed set on each tuple pattern based
retrieval. To avoid this, we must develop a data structure that allows
us to quickly iterate over only the tuples in a set that match a given
pattern.

A data structure that allows this is a bound-unbound map. A
bound-unbound map is a multimap (explained below) in which the
keys are groups of values corresponding to the expressions in a
pattern, while the values associated with a key are groups contain-
ing the values corresponding to pattern variables, taken from tuples
matching the key. (We expect that groups will be implemented as
tuples. Here, we refer to them as groups to avoid confusion with
tuples taken from the accessed set.) A bound-unbound map can be
created from a given tuple pattern and set, and can exist for the life
of that set.

A multimap is a map where a single key may be associated with
a number of values. When accessed with a key, a multimap returns
a set containing all values associated with the key. If no values are
associated with the key, then an empty set is returned. An obvious
implementation of a multimap is as a map from keys to sets of
values. Care must be taken with this implementation to ensure that
keys are garbage collected when their associated sets are empty.

The bound-unbound map for a given tuple pattern and set can
be constructed in time proportional to the size of the set. This is
done by iterating through all elements of the set. Each element of
the same length as the pattern has its components divided into two
groups, those corresponding to expressions and those correspond-
ing to pattern variables. These groups become the key and value,
respectively, of an association that is added to the map. This con-
struction method results in at most one entry being added to the
map for each element of the set, ensuring that the size of the bound-
unbound map is proportional to the size of the set.

The use of a bound-unbound map allows us to break the evalu-
ation of tuple pattern based retrieval into three steps. The first step
is the construction of the bound-unbound map, given above. The
second step evaluates the expressions in the pattern, and uses their
values as a key to access the bound-unbound map. Such a lookup
can be easily implemented using hashing as an expected constant-
time operation (with hashing amortized over the cost of creating
the tuple), and returns a (possibly empty) set giving the values of
the unbound variables in matching tuples. The third step is to use
the contents of this set in a manner appropriate to the construct
being executed. When executing a for-statement, this entails iter-
ating over the contents of the set, an operation that takes time pro-
portional to the size of the set. while- and if-statements cause the
set to be checked for emptiness and, if it is not empty, an arbitrary



1 EDGES ub = MultiMap()
2 for (a, b) in EDGES:
3 EDGES ub.add(b, a)
4

5 for v1 in VERTICES:
6 indegree = 0
7 for v2 in EDGES ub.get(v1):
8 indegree += 1
9

10 INDEGREES add (v1, v2)

Figure 4. Bound-unbound map implementation of initialization.

element is taken from it. Both operations are constant time, as is as-
signing the values from such an element to the pattern variables. In
all three steps, the only operation that takes time proportional to the
size of the accessed set is the construction of the bound-unbound
map.

If we recompute the bound-unbound map each time a retrieval
is executed, then the asymptotic running time of such an implemen-
tation is no better than that of a local implementation. However, an
important difference is that a local implementation requires match-
ing to be performed, while computing a bound-unbound map re-
quires only knowledge of the contents of the set. Information about
the actual values of the expressions in the pattern is not needed to
compute the bound-unbound map. Because significantly less infor-
mation is used, it is more likely that the computation of a bound-
unbound map will be inside an enclosing loop in which the value of
the accessed set, and therefore the bound-unbound map, does not
change. In this case, we can move the computation of the bound-
unbound set to the outside of the enclosing loop. We can move
the computation of the bound-unbound map outside of any loop in
which the accessed set does not change, potentially reducing the
asymptotic running time of the program.

Figure 4 shows the initialization phase of Figure 1 when im-
plemented using a bound-unbound map. The bound-unbound map
is kept in the variable EDGES ub, so named because the first com-
ponent of the pattern is a pattern variable (and therefore unbound),
while the second is an expression (and hence bound). To realize this
example, we have added multimaps to our language, with methods
to add and remove associations, and get the set of values associ-
ated with a key. Sets have a method “any”, that returns an arbitrary
element. The implementation given in Figure 3 takes time propor-
tional to the number of vertices times the number of edges in the
graph, while this implementation takes only time proportional to
the number of edges. This asymptotic improvement is possible be-
cause we can move the computation of EDGES ub outside of the
iteration over VERTICES, as the contents of EDGES do not change
during the iteration.

3.3 Incremental Update
While previously we have recomputed the contents of the bound-
unbound map each time its associated accessed set has changed,
this is neither necessary nor desirable. It is possible to incremen-
tally update the contents of a bound-unbound map when changes to
its accessed set occur. Doing so allows us to further move the com-
putation of the bound-unbound map to the outside of loops where
all updates to the accessed set have been incrementalized. If all up-
dates to a set can be incrementalized, then the only times at which
a from-scratch computation of the bound-unbound map is neces-
sary is when it is initially constructed. If the accessed set starts off
empty, then we can exploit the fact that an empty accessed set pro-
duces an empty bound-unbound map (regardless of the pattern) to
eliminate such recomputation entirely.

We update the bound-unbound map by exploiting the property
that each entry in the map corresponds to an entry in the accessed
set, and each element in the set produces at most one entry in
the bound-unbound map. This means that it is simple to create
incrementalization rules for the two set update operations, add
and remove. When a tuple corresponding to the pattern is added
to or removed from the set, the entry in the bound-unbound map
representing that tuple is computed in the same manner as is done
when the map is computed from scratch. This entry is then added to
or removed from the bound-unbound map, as appropriate. Updating
a bound-unbound map takes constant time per update, allowing
the asymptotic running time of the add and remove operations to
remain constant.

If incrementalization is complete, and all recomputation elimi-
nated, then the only operation that takes non-constant time is itera-
tion over the retrieved result, which takes time proportional to the
number of matched elements in the accessed set, the minimum time
that operation can take. All other operations (incremental addition,
incremental removal, lookup in the bound-unbound map, and re-
trieving a single element) take expected constant time. As a result,
the incrementalized implementation of tuple pattern based retrieval
is asymptotically optimal for a given input program.

3.4 Associating Maps with Sets
One thing we have neglected up until this point is the precise way in
which tuple patterns and accessed sets are associated with bound-
unbound maps. In this section, we first describe the conditions
under which it is possible that a single bound-unbound map can
be associated with multiple tuple patterns. We then discuss static
and dynamic approaches for associating bound-unbound maps with
tuple patterns.

Above, we detailed how a bound-unbound map is constructed
from a tuple pattern and an associated set. The only information
used in this process is information that can be determined from the
tuple pattern statically, specifically the length of the pattern and
which components of the pattern are bound expressions. We can
call this information the bound-unbound pattern, which for each
component of the tuple pattern, contains information about whether
that component is an expression or a pattern variable. It is possible
that a program contains more than one tuple pattern based retrieval
from a given set, such that both retrievals have the same bound-
unbound pattern. In these cases, all retrievals can use the same
bound-unbound map, thus saving space and time by reducing the
number of bound-unbound maps that need to be maintained.

Static Approach. Even with a reduced number of bound-unbound
maps, however, there is still the question of how these maps are as-
sociated with accessed sets. If we have a finite number of sets, and
the sets are always accessed by a single name, then it’s easy to do
this statically. We simply create bound-unbound maps correspond-
ing to each of the bound-unbound patterns that are used in retrievals
from a set, and insert the code to update these maps whenever the
set is updated. While this is a simplistic approach, it works well in
practice, especially when dealing with modules of programs that do
not pass sets to other modules.

Figure 5 gives an example of the static approach in action,
showing how the topological sort example given in Figure 1 can
be translated into working code, with bound-unbound maps stat-
ically associated with sets. Since INDEGREES is initialized to an
empty set, the two bound-unbound maps corresponding to it must
also be empty, and so there is no need to produce code to com-
pute their initial value. In addition, as all access to INDEGREES is
done through INDEGREES bu and INDEGREES ub, we were able to
eliminate INDEGREES itself in favor of maintaining only the bound-
unbound maps.



1 read VERTICES, EDGES
2

3 INDEGREES bu = MultiMap()
4 INDEGREES ub = MultiMap()
5

6 EDGES bu = MultiMap()
7 EDGES ub = MultiMap()
8

9 for (a, b) in EDGES:
10 EDGES bu.add(a, b)
11 EDGES ub.add(b, a)
12

13 for v1 in VERTICES:
14 indegree = 0
15 for v2 in EDGES ub.get(v1):
16 indegree += 1
17

18 INDEGREES bu.add(v1, indegree)
19 INDEGREES ub.add(indegree, v1)
20

21 while True:
22 tmp0 = INDEGREES ub.get(0)
23 if not tmp0:
24 break
25

26 v1 = tmp0.any()
27

28 for v2 in EDGES bu.get(v1):
29 tmp1 = INDEGREES bu.get(v2)
30

31 if tmp1:
32 indegree = tmp1.any()
33

34 INDEGREES bu.remove(v2, indegree)
35 INDEGREES ub.remove(indegree, v2)
36 INDEGREES bu.add(v2, indegree - 1)
37 INDEGREES ub.add(indegree - 1, v2)
38

39 INDEGREES bu.remove(v1, 0)
40 INDEGREES ub.remove(0, v1)
41 print v1

Figure 5. Topological sort, implemented using static association
of bound-unbound maps.

Dynamic Approach. For more complex programs, a dynamic
approach is called for. In this approach, we associate with each
set object certain bound-unbound maps. Instead of attempting to
statically determine which maps need to be constructed for which
sets, we only associate a map with a set once that map has been used
for a tuple pattern based retrieval. While this means that we always
need to compute the contents of a bound-unbound map on its first
use, this does not harm the asymptotic performance, as the amount
of work to do this once is asymptotically less than the amount of
work done to add elements to the set in the first place, and we only
need to compute the bound-unbound map once. After its initial
computation, a bound-unbound map is incrementally updated by
hooks that are called by the add and remove operations on the set.

This dynamic method has the advantage of not requiring much
in the way of static analysis, since all updates are performed by
hooks, at runtime. This means that it works well in the presence of
library code that cannot be changed, and with dynamic languages
where static analysis is difficult, or even impossible in the face of
code that can change at runtime.

Memory Usage. Our method requires that each set maintain a
bound-unbound map for each of the bound-unbound patterns that
is used to access that set. We do not maintain bound-unbound maps
for patterns that are not used in the program, or for patterns that will
never be used to access a set. As any program will have a constant
number of bound-unbound patterns, the memory overhead will be
a constant factor. In the case where a small number of patterns
are used to access each set (as was the case in our examples), the
memory overhead will be a small constant factor.

4. Discussion
Maps and Multimaps. It is often the case that we have a set and
a pattern such that any tuple pattern based retrieval can match at
most one tuple. Such a property is the equivalent of a key constraint
on a database table, and is exhibited in the INDEGREES table of
our running example, which has one indegree for each vertex. The
bound-unbound map for a pattern in which the vertex is bound will
contain at most one entry per vertex. In this case, implementing
the bound-unbound map as a multimap can be wasteful, as each
of the sets in the multimap will contain at most one element,
an unnecessary overhead. In this case, implementing the bound-
unbound map as a simple map suffices.

One solution to this problem is to have the programmer declare
key constraints on sets of tuples, and to use this information to
select the appropriate implementation of a bound-unbound map.
While this method is effective in practice, it does add to the burden
of the programmer, and can lead to faulty programs if a set ever
violates a declared constraint.

Another answer is to implement bound-unbound maps as data
structures that can change their representation. Such a data struc-
ture would be implemented as a map as long as the key-constraint
holds, but would automatically convert its representation to a mul-
timap if the key constraint is ever violated. As the conversion au-
tomatically occurs when elements are added to the set, such a data
structure is efficient when the key constraint holds, and robust to
cases where it doesn’t.

Eliminating Updates. One property of bound-unbound maps is
that, for a given length of tuple, every tuple in the set has a corre-
sponding entry in the bound-unbound map. It is therefore unnec-
essary to store the tuple in the set itself, as it can always be re-
constructed when the set is accessed. By updating only the bound-
unbound maps, and not the set itself, when elements are added to
or removed from the set, we can reduce the cost of add and remove
operations.

Nested Tuple Patterns. While the description of our method only
deals with single-level tuples, our method can also be used to
implement tuple pattern based retrievals involving nested tuple
patterns. This is done by flattening nested tuple patterns before
finding the components that correspond to expressions and pattern
variables, and similarly flattening nested tuples when building or
updating the bound-unbound map.

Extension to Lists. While we have been discussing the retrieval
of tuples from sets, our method is not limited to sets. We have also
developed a data structure that allows one to efficiently perform
tuple pattern based retrieval from lists, subject to limitations on
the update operations that are performed on the accessed list. The
limitation we impose is that addition to and removal from the
accessed list must occur at the head or tail of the list, and not at
arbitrary points in the middle of the list.

The data structure we use to implement this is an ordered bound-
unbound map. This is an ordered multimap where entries can be
added to the start or the end of the map, and are returned as a list in
the order in which they appear in the multimap.



An ordered multimap can be implemented as a map from keys to
lists, in the same way that a normal multimap can be implemented
as a map from keys to sets. The limitation imposed above makes it
possible to determine if the addition or removal of an entry in the
bound-unbound map should occur at the start or the end of a list.
If we allowed addition of an element to occur at an arbitrary point
in an accessed list, it would be impossible to determine, in constant
time, where in the associated list in the bound-unbound map to add
the new entry. When subject to this limitation, however, addition
and removal can be done incrementally in constant time, making
tuple pattern based retrieval that accesses a list as efficient as that
which accesses a set.

Alternative Syntax. The syntax proposed in this paper is by no
means the only syntax that is possible for tuple pattern based
retrieval. There are alternative syntaxes that are potentially more
appropriate for specific languages.

When used with a dynamic language, it may make sense to add
a keyword or other syntax element that indicates which components
of a tuple pattern are bound expressions. This can reduce confusion
in languages where variable bindings can leave a block. It may be
necessary in languages (such as Python) where our proposed syntax
is already legal, but has a different meaning.

Alternatively, one may indicate which components are pattern
variables. This may be desirable in languages that require type
annotations, as the type annotation can serve both to indicate that a
variable is unbound, and to declare its type when it becomes bound.

5. Implementations
To gain experience with tuple pattern based retrieval, we have
developed two systems that allow programs to be written using it.
Our first system takes programs written in a high-level language
and transforms them into efficient C++ code. This system has been
successfully used in the implementation of a number of algorithms.
At the same time, it suffers from a number of limitations. Instead
of extending this language to address these, we have chosen to
develop a second tool that adds tuple pattern based retrieval to an
existing programming language. Our second tool takes as input a
program written in Python extended with the three tuple pattern
based retrieval statements, and outputs efficient standard Python
code. In this section, we discuss the history of these systems, the
differences in the generated implementations, and the advantages
and disadvantages of each.

Our systems are available for download from
http://rothamel.us/tpbr/ and
http://www.cs.sunysb.edu/~dar/.

5.1 High-Level Language
Our high-level language, named PATTON, was originally written to
assist in the implementation of parametric regular path queries, as
described in [11] and the experiments section below. The inspira-
tion for tuple pattern based retrieval originally came from the pseu-
docode found in that paper. This system was developed with two
goals in mind: to allow us to efficiently try variants of the algo-
rithms by translating the high-level language to C++, and to allow
us to compare implementations of bound-unbound maps. Specifi-
cally, we compared based representations (using records and linked
lists, as given in [17, 15, 16, 10] and [3]) with hash-table represen-
tations. While we originally added tuple pattern based retrieval to
minimize the differences between an algorithm’s implementation
and its pseudocode, we quickly began to appreciate it as a language
construct in its own right.

The high-level language is a simple one, but one that allows
a number of algorithms to be easily expressed. Along with all
three tuple pattern based retrieval statements, it includes statements

for reading input and writing output, and for adding elements to
and removing elements from sets. As data it supports sets, tuples,
strings, and integers. The support for the latter two is limited to
the equality comparisons needed for tuple pattern based retrieval.
This is because the construction of new values through mathemat-
ical or string operations can interfere with based representations.
The high-level language supports two kinds of variables: normal
variables that can refer to strings, integers or tuples of such values,
and set variables that can only refer to sets. Each set variable refers
to a single set, and there is no way to create sets besides declaring
set variables. As a result, programs written in this language support
only a finite number of sets, all known statically. This, in conjunc-
tion with add and remove statements, makes it easy to insert code
to maintain the bound-unbound maps, without needing complicated
static analysis. An additional statement in the language allows spec-
ification of key constraints, which are used to select between map
and multimap implementations of the bound-unbound maps.

Our high-level language proved to be a success, both on its own
and when used as a target to simplify code generation. As we will
discuss in the experiments section, we were able to use it to imple-
ment parametric regular path queries and Datalog rules. Although
not discussed in this paper, we also used it to implement relational
calculus queries. In all three cases, tuple pattern based retrieval re-
duced significantly the amount of effort needed to produce efficient
code.

As we moved into the area of security policies, however, some
issues with our language became apparent. A lack of support for
function or procedure calls makes it impossible to implement secu-
rity policy frameworks, such as role-based access control. While it
would be possible to extend this language to include these features,
we felt that it would be more useful to add tuple pattern based re-
trieval to a popular language. This decision led to the creation of
our second system.

5.2 Python Preprocessor
We then implemented tuple pattern based retrieval as a preproces-
sor that takes as input Python programs augmented with the three
tuple pattern based retrieval statements, and outputs efficient stan-
dard Python code. Python was chosen as a source and target lan-
guage because of its built-in support for tuple construction and set
iteration, both of which are syntactically similar to what is used
in our tuple pattern constructs. Indeed, this similarity is to such
an extent that we chose to give the added tuple pattern constructs
different keywords, to prevent code that uses our extensions from
being run by Python itself.

Our preprocessor generates code that uses callbacks to update
the bound-unbound maps, with the maps themselves being stored,
when present, in fields on the set objects themselves. This allows
modifications to the underlying code to be minimized. The Set
class is modified to automatically invoke callbacks when elements
are added to or removed from it, a modification that only needs
to be done once, regardless of the number of tuple pattern based
retrieval statements and the number of add and remove call sites
in the program. All of the other modifications to the program
are confined to the immediate vicinity of the tuple pattern based
retrieval statements. We do not need to find or modify statements
that add and remove elements of the set, as such operations are
detected using callbacks. This means that the preprocessor does
not require a global static analysis, making it suitable for programs
that may use arbitrary library code, and for programs that modify
themselves (by constructing and evaluating code) at runtime. The
code generated by our preprocessor represents all bound-unbound
maps with a data structure that changes from a map to a multimap
when necessary.



In the experiments section, we present the results of applying
the preprocessor to the running example of topological sort, to
graph reachability, and to role-based access control. The experi-
ments revealed a number of optimizations that can be added, such
as eliminating the construction of 1-component tuples, and keep-
ing references directly to the bound-unbound maps. At the same
time, the experiments show that the preprocessor is able to gen-
erate asymptotically efficient implementations of Python programs
written using tuple pattern based retrieval.

6. Experiments and Applications
In this section, we present the results of a number of experiments
we conducted on programs written using tuple pattern based re-
trieval. These experiments were conducted over a variety of prob-
lem domains: graph algorithms and queries, program analysis, and
security policy frameworks. We conducted these experiments to
evaluate the advantages of having tuple pattern based retrieval as
a language construct, and to confirm that the predicted efficiency
of bound-unbound maps can be actually achieved. This section in-
cludes experiments done using both of our tools, with a mix of ex-
periments that were performed as part of research into other areas,
and experiments that are original to this paper. The latter allows us
to demonstrate on well-known examples the effectiveness of tuple
pattern based retrieval, while the former shows its applicability to
a range of problems.

In this section, when lines of code are given, the value pro-
vided is the number of lines of code that solve the problem, ex-
cluding comments and blank lines. This does not include the size
of the library code included by an implementation, nor does it in-
clude the size of the test harnesses used to collect statistics. Unless
otherwise noted, performance measurements were collected on an
AMD Sempron 3100+, running at 1.8 GHz. When preprocessor-
generated Python programs were run, Python 2.3.5 was used. The
measurements are the average of five runs on the same input data
set.

6.1 Topological Sort
The first experiment we perform is on the running example of topo-
logical sort. We created four Python implementations of the topo-
logical sort algorithm given in Figure 1. Two of these implemen-
tations are the local and bound-unbound map implementations au-
tomatically created by the current version of the preprocessor. A
third implementation consists of the bound-unbound map imple-
mentation, hand optimized to eliminate unnecessary tuple construc-
tion and store bound-unbound maps in local variables to prevent
repeated field lookups. This version represents optimizations that
are planned for a future version of the preprocessor, but are not
yet implemented. The final implementation was a hand implemen-
tation of the version of the program given in Figure 5, similar to
what would be generated from our pseudocode language, except
in Python rather than C++. This was implemented by hand so we
could compare a static implementation with the dynamic imple-
mentation generated by the preprocessor, under similar conditions.

Table 1 shows the results of these experiments. The first thing
to note is the expansion of the program sizes. The topological
sort algorithm, written in Python with tuple pattern based retrieval
statements, is 13 lines long. The implementations varied in length
from 29 to 63 lines long, so using tuple pattern based retrieval leads
to a program that is less than half the size.

To evaluate the performance of the generated code, we ran the
implementations on topological sort problems of varying size. In
all cases, the input data consisted of a linear chain of vertices, such
that there is one unique topological sort.

The first thing to note is that the local implementation of the
program is asymptotically slower than the other three versions,

1 read start, EDGES
2

3 WORKSET = Set()
4 RESULT = Set()
5

6 WORKSET add start
7 RESULT add start
8

9 while v1 in WORKSET:
10 for (v1, v2) in EDGES:
11 if v2 not in RESULT:
12 WORKSET add v2
13 RESULT add v2
14

15 WORKSET remove v1
16

17 print RESULT

Figure 6. Graph reachability, written using tuple pattern based
retrieval.

as predicted. The unoptimized dynamic version, while still linear,
is much slower than the other two versions, while the static ver-
sion is slightly faster than the optimized dynamic one. We attribute
this difference to the increased indirection required in the dynamic
version, and while we are working on decreasing this indirection
penalty, we recommend using a static implementation when possi-
ble.

6.2 Reachability
To attempt to determine the cause of the difference in the running
times of the static and dynamic versions of the program, we used
the preprocessor to generate implementations of the graph reach-
ability algorithm given in Figure 6. This algorithm contains two
tuple pattern based retrievals, one from WORKSET and one from
EDGES. The retrieval from WORKSET does not require a bound-
unbound map, as no bound expressions are used in it. The only
bound-unbound map is the one used for retrievals from EDGES. As
EDGES is not updated in the loop, this bound-unbound map is not
changed from when it is created, allowing us to consider the perfor-
mance of the queries themselves without needing to also consider
the cost of updating bound-unbound maps.

We implemented two versions of graph reachability. The first
version was a dynamic bound-unbound map implementation auto-
matically generated from a Python translation of the code given in
Figure 6. We did not create a hand-optimization of this version, as
the optimizations only pertain to bound-unbound map update. For
comparison purposes, we also created by hand a static version of
the graph reachability, again similar to what would be generated
from our pseudocode language, except in Python instead of C++.

The results are given in Table 2. The first thing to note is that
the dynamic implementation doubles the size of the initial 12-line
program, while the static implementation adds a mere four lines.
This is because the dynamic implementation still has to include
the update code, even if it is never called, while the static version
can eliminate it entirely. This has no effect on the running time,
as the dynamic implementation is marginally faster than the static
one. Achieving similar results on a program that does not contain
any updates suggests that it is the update functions that differ
in performance between the static and dynamic versions of the
program.



Running time for number of edges
implementation size 1,000 2,000 3,000 4,000 5,000

local 30 678 (19.94) 3,012 (43.03) 7,190 (66.57) 13,580 (97.00) 23,750 (132.68)
dynamic b-u map 63 56 (1.65) 116 (1.66) 176 (1.63) 234 (1.67) 296 (1.65)

optimized dynamic b-u map 63 34 (1.00) 74 (1.06) 110 (1.02) 150 (1.07) 185 (1.03)
static b-u map 29 34 (1.00) 70 (1.00) 108 (1.00) 140 (1.00) 179 (1.00)

Table 1. Program size in lines and running times in milliseconds for implementations of topological sort. The numbers in parenthesis are
running times relative to the static implementation.

Running time for number of edges
implementation size 50,000 100,000 150,000 200,000

dynamic b-u map 24 790 ms (0.98) 1,604 ms (1.00) 2,396 ms (0.99) 3,218 ms (0.99)
static b-u map 16 803 ms (1.00) 1,607 ms (1.00) 2,414 ms (1.00) 3,240 ms (1.00)

Table 2. Program size in lines and running times in milliseconds for implementations of graph reachability.

6.3 RBAC — Role-Based Access Control
An example of a realistic system that benefits from tuple pattern
based retrieval is role-based access control. RBAC controls access
by assigning permissions to perform operations on objects to roles,
and then assigning users to those roles. When a user activates a role
in a session, that session has all the permissions of the role. This
simplifies the management of permissions in systems with many
users, objects, and operations.

In the ANSI standard for RBAC [7, 1], RBAC is specified
using eight sets and four maps from values to sets. Five of the
sets are uninteresting from our perspective, containing only values
of a given type, and not tuples. The remaining three are sets of
pairs: PRMS contains all possible permissions in the system as
object-operation pairs, PA relates roles with the permissions the role
has, and UA assigns users to roles. Of the maps used in the core
RBAC specification, only user sessions and session roles
are fundamental, mapping a user to his sessions and a session to its
roles, respectively. The other two, assigned permissions and
assigned users, duplicate information contained in PA and UA,
respectively.

To help evaluate tuple pattern based retrieval, we translated the
administrative and system functions of core RBAC from the variant
of Z used in [7] to the dialect of Python that our preprocessor can
process. As part of the conversion, we eliminated the two redundant
maps, and turned the other two maps into sets of pairs. We were
able to eliminate 10 of the 30 map and set updates from the 13
functions we translated. The resulting translation consists of 85
lines of python, comprised of 36 assertions, 19 set updates, 13
function definitions, 8 tuple pattern based retrievals, 3 function
calls, 2 set membership tests, 2 set iterations, and 2 returns.

When translated by our preprocessor into a dynamic bound-
unbound map implementation, the size of the program swelled to
211 lines. Inspection of the generated code showed that the prepro-
cesor correctly generated bound-unbound maps corresponding to
assigned permissions and assigned users. By using a tuple
pattern based retrieval, we were able to eliminate two maps and a
third of the update operations from the specification of RBAC.

Figure 7 demonstrates how an efficient implementation of
tuple pattern based retrieval improves asymptotically the run-
ning time of our program. It shows the time it takes to per-
form 100000 check access operations while varying the size of
session roles, the set that maps a session to the roles used by
that session. In this graph, the number of roles per session is fixed
at 10, while the number of sessions increases. The local imple-
mentation takes running time proportional to the total number of
session-role pairs in the system, while the dynamic bound-unbound
map implementation remains constant, scaling only with the num-

Figure 7. Running time of 100000 RBAC check access opera-
tions.

ber of roles per session. This beats the asymptotic performance of a
straightforward implementation of the Z specification, which takes
time proportional to the number of roles in the system, of which the
roles per session is a subset. This demonstrates that tuple pattern
based retrieval not only simplifies the implementation of RBAC, it
also allows us to generate an implementation that is an asymptotic
improvement.

6.4 Other Applications
In addition to the experiments performed above, tuple pattern based
retrieval has been successfully applied to a range of problems, each
complex enough to have merited its own paper. Here, we discuss
how tuple pattern based retrieval was used in the experiments
in those papers. In contrast with the experiments given above,
our focus here is on describing how tuple pattern based retrieval
simplified the creation of those implementations, rather than on
performance measurements.

Parametric Regular Path Queries. Parametric Regular Path
Queries [11] match a regular-expression-like pattern containing
variables against paths in a graph containing labels. An existential
regular path query returns the set of all vertex-substitution pairs



such that there exists a path from the start vertex to the returned
vertex where the labels on that path match the pattern, after the
substitution has been applied to the pattern. This has a number of
applications to program analysis, as simple queries can find uses of
uninitialized variables, violations of locking disciplines, and other
properties of the program.

Tuple pattern based retrieval was used in the implementation of
multiple algorithms that perform parametric regular path queries.
Indeed, it was the need to efficiently generate implementations of
the algorithms in [11] that lead to the creation of our high-level
language, and the pseudocode found in that paper that inspired the
design of that language. By automatically generating extremely
efficient C++ code that uses based[15, 3] representations of the
bound-unbound maps, we significantly reduced the effort required
to implement variants of the parametric regular path query algo-
rithms. This allowed us to give experimental performance results
for a number of variants, enabling us to give guidance as to when
each variant should be used.

When written using tuple pattern based retrieval, various algo-
rithms for performing parametric regular queries range from 19 to
34 lines of code, counted as described in this section, including
3 tuple pattern based retrievals. When our pseudocode language is
translated into C++, the code size expands substantially. The 19 line
example was translated into 696 lines of C++, the 34 line variant
to 833 lines. The generated code is fast, processing over 400,000
worklist entries per second. The running time of the implementa-
tions scales only with worklist size, further showing how bound-
unbound maps can be used to implement tuple pattern based re-
trieval in an asymptotically optimal manner.

Datalog Rules. Tuple pattern based retrieval also shows promise
as a construct in intermediate languages that tools can target. A
method [12] is described that transforms a set of Datalog rules
into efficient low-level implementations with guaranteed time and
space complexities, avoiding dependency on a potentially large
interpreter. One implementation of this method uses our high-level
language, PATTON, as an intermediate language, to simplify the
code generation process. It first generates code in PATTON, and
then that code is translated to C++. Another implementation that
generates C directly consists of 327 lines of Python, and uses a
library of 2,000 lines of C code. The generator that targets our high-
level language was written in two days, and consists of only 114
lines of Python code, and does not require a custom library.

To show the effectiveness of this approach, we give two exam-
ples. A transitive closure algorithm consisting of two Datalog rules
was translated into 27 lines of high-level code, which in turn be-
came 595 lines of efficient C++. A pointer analysis algorithm was
translated into 93 lines of high-level code, and 1,944 lines of C++.

7. Related Work and Conclusion
Tuple pattern based retrieval is related to work in a number of fields
of computer science. Since it involves querying data, it is related to
databases. As a programming language construct, it is related to
programming languages. It is also related to the tuple spaces used
in distributed programming, and to indexing in Prolog. Lastly, our
work can be considered to be in the area of data structure selection.

When working with sets of tuples, an obvious comparison is
with relational databases. Tuple pattern based retrieval can be con-
sidered a restricted form of the select operation found in relational
algebra. By focusing on only one operation, we gain a number of
advantages over relational databases, which support more compli-
cated queries. One advantage is that our query syntax is much more
succinct than that of embedded SQL, and fits more naturally into
programming languages. A second advantage is that we do not
require a RDBMS, with the expense (in code size, running time,

and occasionally currency) that implies. Finally, because of the low
overhead of performing tuple patten based retrieval, it can be used
in places where a database query would not be, such as the inner
loop of the graph reachability example.

That said, there is much to be learned from relational databases.
This paper leaves the query optimization possible with relational
algebra up to the user. It is possible to automate such optimizations,
even without the information about set size that is known to a
database query optimizer. In [14], it is shown how some relational
queries can be translated into efficient code using tuple pattern
based retrieval. A second issue is that we maintain bound-unbound
maps, which are in many ways equivalent to indices in databases,
for every tuple pattern based retrieval in the program. An area of
research in databases is automatically determining which indices
most benefit query performance [5, 9]. We may use similar methods
to determine which bound-unbound maps most improve program
performance. On a memory-limited system, when trading speed for
memory we want to ensure that we make the best trade possible.

Moving on to programming languages, we should note that
quite a few languages have support for tuple patterns. These include
the ML family of languages, where there has been some work
done on optimizing pattern matching [8], and dynamic languages
such as Python and Perl. In these languages, pattern matching is
against a single value, rather then a set of values. This disallows the
asymptotic improvements we achieve by only retrieving matching
values from a set.

The languages that we have found that contain the closest ana-
log to tuple pattern based retrieval are Linda [4] and its successors,
such as TSpaces [21]. They provide a simple model for distributed
computing by providing shared tuple spaces, which are sets of tu-
ples that can be distributed among multiple computers. Tuples in
a space can be matched by providing the values of some of the
fields, as in our tuple patterns. There is a difference in focus be-
tween Linda systems, which support distributed retrieval from a
relatively small number of tuple spaces, and tuple pattern based re-
trieval, which provides fast centralized retrieval from a potentially
large number of sets. Descriptions of Linda-like systems (such as
those in [20]) focus primarily on retrieving a tuple from an ap-
propriate distributed node, and do not address the problem of ef-
ficiently finding a tuple once that node has been found. In this way,
we complement the work they have done.

One strategy that Prolog implementations use is to index facts to
eliminate impossible unifications. By replacing sets of tuples with
facts, and replacing matching with unification, our bound-unbound
maps can be seen to accomplish a similar purpose as these Pro-
log indexes. More specifically, by indexing on all expressions, our
method is similar to multiple argument indexing (also called multi-
ple position indexing), as found in [19, 2, 6]. Many Prolog systems
do not support multiple argument indexing, instead indexing on
only a single argument per fact. Systems that support multiple argu-
ment indexing either require the user to declare indices explicitly,
or only generate indices in conjunction with other optimizations.
Our method determines indices automatically from user-supplied
code, even without analyzing the entire program.

Our work can be considered a case of data structure selection,
and as such owes much to the pioneering data structure selection
work performed with the SETL programming language [17, 15,
16, 10, 3]. Our work extends theirs by providing support for sets of
arbitrary-length tuples, instead of sets of pairs, and by providing a
syntax that allows us to use expressions to match any component
of a tuple, rather than just the first component of a pair.

Finally, method for incrementally maintaining bound-unbound
maps is inspired by previous work in the area of incrementaliza-
tion [13, 18], also known as finite differencing.



Tuple pattern based retrieval is a language construct that raises
the level of programming by allowing sets of tuples to be easily
retrieved. It makes many programs easier to write, by freeing the
programmer from having to explicitly maintain index maps. The
resulting programs are simpler and easier to understand. We have
developed a method for transforming programs using tuple pat-
tern based retrieval into programs using only standard constructs,
and shown through experiments that the method produces efficient
code. For these reasons, we believe that tuple pattern based retrieval
is a worthy addition to a programming or specification language.
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