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Abstract

This paper describes a general and powerful framework fioiesft
runtime invariant checking. The framework supports (1)aedive
specification of arbitrary invariants using high-level gas, with
easy use of information from any data in the execution, (2)gre
ful analysis and transformations for automatic generatfdnstru-
mentation for efficient incremental checking of invariaread (3)
convenient mechanisms for reporting errors, debuggingjfaking
preventive or remedial actions, as well as recording hysiata for
use in queries. We demonstrate the advantages and effexsivef
the framework through implementations and case studids atit
stract syntax tree transformations, authentication in &Sient,
and implementation of the BitTorrent peer-to-peer file sigacom-
munication protocol.

1. Introduction

Program safety, security, and general correctness piepepend
on all kinds of invariants holding during program executigwen
though static analysis can verify many invariants, manyartgnt
invariants are still too difficult to verify automaticallysing static
analysis. Therefore, itis critical to use dynamic techeggjto check
during program execution that these invariants hold. Thisiown
asruntime invariant checkinglt is challenging for at least three
reasons:

1. invariants that relate information at multiple prograwints
are difficult to specify and to verify at any one point in the
execution,

2. the runtime overhead from invariant checking should bei-mi
mized, and

3. imminent violations of critical invariants should be eleted
before they occur, and appropriate actions should be taken i
response.

This paper describes a general and powerful framework for
efficient runtime invariant checking. The framework suppdf.)
declarative specification of arbitrary invariants usinghlevel
queries, with easy use of information from any data in the ex-
ecution, (2) powerful analysis and transformations foroeatic
generation of instrumentation for efficient incrementakaiing
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of invariants, and (3) convenient mechanisms for reporéngrs,

debugging, and taking preventive or remedial actions, dbage
recording history data to use in queries. The transformatere

built on InvTS rules [18], which describe how to incremelytal
maintain invariants.

We also describe a number of case studies that demonstrate
the advantages of our framework and the effectiveness ofnour
plementation. The implementation is for Python. The experits
include checking invariants about (1) abstract syntaxst{@eT)
transformations on programs varying sizes between 400 G0@0L
AST nodes, (2) Kerberos authentication used by a SMB clieitt w
ten in Python, and (3) implementation of network protocotsdis-
tributing files in BitTorrent. In these experiments, all theariants
of interest can be expressed easily in our framework, anfbper
mance results show that our incremental checking scaldsowel
large applications and complex invariants.

Much research has been done on runtime invariant checking,
including a large variety of languages for specifying theanmants
and methods for efficient instrumentation, including methéor
incremental checking for certain kinds of invariants, ascdssed
in Section 5. To the best of our knowledge, no previous wottk bo
supports the generality of the kinds of invariants that oamfe-
work supports and achieves the efficiency that our impleatzmt
method achieves.

The rest of the paper is organized as follows: Section 2 gives
an overview of our framework and describes the language for
specifying invariants and actions. Section 3 describelysisaand
transformations for incrementally checking the invarsar@ection
4 presents experiments that show the effectiveness anieréfic
of our framework and implementation. Section 5 discusslkesed
work.

2. Framework

This section presents our framework for specification odiiants
and actions to be taken when they are violated. Invariamt®ear
pressed as boolean conditions involving variables quedtifiver
collections. Violations of an invariant correspond to egptontain-
ing values of those variables for which the condition isdalEhere-
fore, we formulate runtime invariant checking as evaluatineries
that return such sets of tuples. Thus, the basic form of aariant
checking rule in our framework is

foreach (vlin S1,v2in S2 ... :condition):
action

whereS1, S2 ..., are collections (sets, lists, etc.). The set of tuples
of values ofvl, v2, ..., such thatonditionholds is called theuery
result actionis a statement to be executed for each violation of the
invariant, i.e., for each tuple in the query result.
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For example, the following rule could be used to check that
the usage_count field of each instance of theile class is non-
negative.

foreach (o in extent(File) : o.usage_count < 0)
report ("Error: File ", o, " has negative",
" usage_count.")
stop()

For every clas§’, extent (C) is a special set defined by our frame-
work to contain the set of currently existing objects of typerhe
report andstop functions in this example are two functions in the
subject programming language (Python¢port takes any num-
ber of arguments and prints the concatenation of theirgstepre-
sentations, andtop stops the program and drops into a debugger,
allowing the user to examine the state of the program at tie po
at which the invariant was violated.

While itis easy to see how to efficiently check simple invarsa
like the one above (by inserting checks at all assignmentheo
usage_count field), it becomes more difficult even for slightly
more complex invariants. For example, consider a prograah th

manipulates ASTs, and we want to check that no node has an edg

to itself. Assume that AST nodes are instances df$iNode class
that declares ahildren field. The invariant can be checked using
the rule:

foreach (o in extent(ASTNode) : o in o.children)
report ("Error: ", o, " has a self-edge.")
stop()

Checking this invariant efficiently is more difficult, beczualias-
ing implies that it can potentially be violated by any sta¢etrthat
adds an object to a collection, as in this scenati@ . children;

.; x.add (o). Manually writing code to detect such bugs is te-
dious: one must intercept all calls to théd method of a set, deter-
mine whether the target object equals e 1dren field of some
instance ofiode, etc. In our framework, the user writes the simple
rule above, and our system takes care of the rest, genecatirect
and efficient code for it.

Queries that involve multiple variables typically involy@n
conditions which relate the values of the variables. For example,
suppose the graphs in the previous example should alsfyshgs
invariant that every node has at most one incoming edge.cHns
be checked using a rule such as:

foreach (n in extent (ASTNode), m in extent (ASTNode),
c in extent(ASTNode) : ¢ in n.children and
c in m.children and n'!=m )

report ("Error: ", c, "is a child of both ",
m, n and ||’ n, ||‘||)
stop()

Again, itis easy to write this rule in our framework, but itigficult
to manually write code that efficiently checks this invatiahrun-
time, since this requires maintaining auxiliary data durces with
information about edges, in addition to dealing with thesilig
issue discussed above.

Some invariants cannot be expressed using queries overtexte
and existing sets in the program. For example, consider amoem
nication protocol. A query cannot refer to the set of all pEsksent
by the program, unless the program happens to maintainghdt s
is not an extent, because packet objects are removed froexthe
tent by garbage collection. To support such queries, oundveork
supports rules that add code throughout the program. Thtsrie
is similar to aspect-oriented programming, and it can bel use
insert code that maintains additional sets.

The general form of an invariant checking rule is shown in
Figure 1. The meaning of the new clauses is as follows. Th&sgyn

foreach(query) :
action
(de in scope (field_decl|method _decl)?)*
(at update
(if condition)?
(de (in scope (field|method)™*)*)?
do (before maint (after maint)?) |
(instead maint)
)*

Figure 1. General form of an invariant checking rule.

of these clauses is taken from InvTS [18], where they are used
in rules that describe how to maintain invariants; this isywre
useupdate and maint as suggestive names for the code patterns
in the at and do clauses, but they are not limited to matching
updates and specifying maintenance code. dhelause contains
a code patternipdate, which may contain subject-language code
éamd meta-variables. Meta-variables are denoted by prgftkiair
name with “$”. For each part of the code in the subject program
that matches the pattern in the clause, if theconditionin the if
clause is satisfied, then the declarations indagmnemonic for
“declaration”) clause are inserted in the program in theciigel
scope, and thenaintcode in thedo clause is insertedefore or
after the matched code, as specified, ot,iktead is used in the
do clause, the matched code is replaced with the code iridhe
clause. In thei.f clause, the condition is built from standard logical
connectives and functions defined for the subject langubge.
example,class (expr) returns the class in whickzpr appears,
andtype (ezpr) returns the type ofzpr. In thede clause scope
can beglobal or the name of a class, method, package, or file.
Continuing the above example, the following rule could bedus
to check an invariant about packets that is expressed irstefra
set$sent_packets containing all sent packets (a specific example
appears in Section 4). Note that the meta-varigbknt_packets
gets instantiated with a fresh program variable when thgrara
is transformed.

. $sent_packets ...)
LD

foreach (...
report ("Error :
stop()

de in global:
$sent_packets=set ()

at $x.send($packet)

if extends(type($x),socket)

do before:
global $sent_packets
$sent_packets.add($packet)

3. Analysis and transformations

The straightforward way to implement the framework desatib
above is, for every query, to ask at every program point “Wat
the result of the query?”. This is clearly correct, yet veons es-
pecially if the size of the sets queried over iterated ovéarige. A
better way is to only ask at the program points that couldipbss
update the result of the query. This is clearly faster, yiitcstuses
us to repeatedly reevaluate the query. A better approachaffit
ciently maintain the result of the query whenever a set cecitihe
query depends on changes.

Doing this requires two steps: (1) generating the mainteman
code that will properly maintain the results of the queryha face
of updates to the data the query depends on, and, (2) apylyeng
maintenance code at all places that change the query’dsesul
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Step 1 is accomplished by compiling the query into an InvTS
rule [18], which then transforms the subject program so that
maintains the query’s value. InvTS (the Invariant-Drivaarisfor-
mation System) is a program transformation system thatasege
towards source-to-source transformations that maintaiariants
of the following type: a variable is equal to the result of a&u
with respect to all possible updates to the sets and fieldgiubey
depends on.

Step 2 is performed by InvTS itself. To maintain the resuits o
query, InvTS inserts user-provided maintenance code ay &vea-
tion that updates the variables the query depends on. Thighstr
forward way is to insert maintenance code at every statemeine
program, preceded by a runtime check that verifies that tite-st
ment actually updates the data the query depends on. This slo

5. lteration with only the set variable bound, generatesra fo
statement that iterates over the set.

If a clause does not match one of the conditions in this et
cannot be generated. Each generated for-statement biadisible,
which can cause statements to become generatable or tarise i
priority. As all variables can be bound through iteratiorergually
all clauses will be generated.

Handing joins. For each join, we maintain a hash-join auxiliary
map. For example, if we have the join . parent==v2.name, v1

is bound, andr2 iterates oves2, for each objecb in S2 there is a
mapping fromo .name to o. Maintaining these mappings requires
the generation of additional auxiliary code, which must ba r

down the transformed program even when no updates occur, duebefore the maintenance code given above. This code may be run

to the evaluation of the runtime check at every statemenhén t
program. InvTS uses control-flow, data-flow, type, and aliéar-
mation to evaluate as many of these checks as possible atleemp
time, thus reducing the overhead of maintaining the quesylte

Generating maintenance code. As InvTS alone cannot derive
the actual code to maintain the value of the query, we give a
method that, for a class of queries, generates maintenadedicat
incrementally maintains the result of these queries. Thathod is

a subset of the method given in [20].

We generate efficient incremental maintenance code foiegier
of the form v1 in S1, v2 in S2, | condition. The
condition is a conjunction of predicates and joins. Prediganay
only depend on the variablest, v2, etc, and their immediate
fields (“1.a is allowed, butvi.a.b is not), while joins must be
of one of the following formsy1==v2, v1!=v2, vi==v2.field,
vil=v2.field, vl.fieldl==v2.field2,vl.fieldl!=v2.field,
vl.field in v2.field, andvl not in v2.field. S1 andS2
must have constant-time membership testing.

in response to addition and removal.

Auxiliary clauses. As auxiliary clauses have the same syntax as
InvTS, all auxiliary clauses (if, do, de, at) are copied ithte InvTS
rule being generated.

Type analysis. Static type analysis can be used to reduce the

number of runtime checks, because if a variable of a givea typ

being updated, and variables (or fields) of this type are setlun

the query, then the update cannot affect the result of theygaed

the corresponding runtime check does not need to be perfbrme
Our type system expands on Python'’s type system by making it

more precise. We introduce types that represent constatssof

known length, lists of known type, lists of known content,pyn

vs. non-empty strings, positive and negative numbers gerte

floats, etc.), types which are the union of two or more typés, e

This higher precision, coupled with making the type analgsatic

(Python only provides dynamic type analysis), allows InvibS

evaluate a large number of runtime checks statically. Fram o

There are three kinds of updates that can affect the result of €xperiments, the overhead reduction due to type analysisris

these queries: the addition of an object to a collectionréheoval

of objects from a collection, and changing the value of a fieldn

object. We decompose more complicated updates into thegdesi
updates. We further simplify the problem by replacing figdates
(for both scalar and collection fields) with code that rensoea

object from all sets containing it, updates the field, anddds it to

all sets. This transformation requires maintaining anlaanyi map

from each object to the sets containing it.

Finally, we note that the query result only increases when ob
jects are added t® sets 1, S2) , and the query result only de-
creases when objects are removed fromgtsets. Since we only
execute the action body when the result set increases, gassn
that we only need to handle the set addition case. Howevég, no
that during set removal we may update auxiliary maps.

Handling element addition. To handle addition of an object to a
S set, we run the query with the correspondingariable bound to
the object being added. We then generate statements comcBsg
to each of the clauses (iteration, predicate, and join) éncthery.
The code is generated in the following order:

1. Predicates with all variables bound, generates an tiéstant
evaluating the predicate.

2. lteration with both variables bound, generates an iestent
with a membership test.

3. Joins with both variables bound, generates an if-statethat
tests membership in a hash-join map.

4. Equality and set-membership joins with one variable lbipun
generates a for-statement that iterates over the apptepnay
in a hash-join map.

30% to 100%, as seen in Table 1.

Alias analysis. Alias analysis is also used by InvTS to reduce the
number of runtime checks, as an update to a variable thattis no
aliased to a variable or field in the query cannot update &afy,

the more conservative the alias analysis, the less runttreeks
can be removed. That is why we use a flow-sensitive interproce
dural may-alias algorithm, in contrast to the more congema
but easier-to-implement flow-insensitive algorithms sast\nder-
sen’s.

The alias analysis algorithm we use has time complexity of
O(n*), and is based on the intraprocedural, flow-sensitive niag-a
analysis by Goyal [8]. Goyal’s algorithm is intraprocedureorks
on C, and has a running time of &€%). Thus, it had to be extended
to handle Python, and to work interprocedurally. This reeslibn
increased asymptotic complexity of @), although in practice,
for all programs we have analyzed, we have always obsened th
running time increasing quadratically with the size of thegvam.
From our experiments, the overhead reduction due to alizlysia
is from 30% to 50%, as seen in Table 1.

4. Experiments

To demonstrate that our technique can efficiently verifyamv
ants, we have applied it to invariants from multiple domagis-
stract syntax tree transformations, authentication, aatbpol im-
plementation. For each invariant, we compare the perfocaaf
the program without any invariant checking; with invarute-
ing checked incrementally using method described in thepa
and with invariants checked in a non-incremental mannereby r
evaluating the query from scratch each time an update accurs
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All experiments were performed on Windows Vista, running on
a Core 2 Duo (Q6600@3.0GHz) machine with 8GB of memory, of 20
which 6GB were free. For all examples, Python 2.5.1 was used.

4.1 AST transformations

For an abstract syntax tree (AST) to be correct, there arerdau

of invariants it must satisfy. For our first two experimentg, check
that no AST node is its own child, and that each AST node is
the child of at most one parent. If an AST transformation exyst
violates these invariants, it is incorrect.

For these experiments, we apply InvTS to itself to create
checked-InvTS, a version of InvTS that checks to ensurepittat
gram transformations do not violate the AST invariants. ckbd-
InvTS is then run with a rule-set that transforms subjecymms
into single-assignment form. Note that in this case, we hezl-

|y g
o 0

o
o

Running time ratio to "No invariant"

E= No shared child
3 No own child
Hl No invariant

ing the correctness of checked-InvTS, rather than the progit 00 chunk,  weakref,  bdb,  pickied, | tarfle, Forran2003,
. . 493 1021 2026 4239 7877 15955
is applied to. Proaram. Number of AST Nodes

Not own child. In an abstract syntax tree, a node may not have Figure 2. Running times of InvTS normalized to the running time
itself as a child. We haver written a rule that reports cadesrethis of the non-instrumented version.
invariant is violated, then stops the program so that thgnarmmmer

can investigate: We also see that when joins used by the query have a highiselect

ity, as these do, the running time of the instrumented pragsanot

foreach (o in extent(ASTNode) : o in o.children )
report(o, " is a child of itself!") very dependent on the query, but more so on the number okslass
stop() for which we maintain extents.
Figure 2 shows that the running time of checked-InvTS when 4-2 Authentication
verifying the not own child invariant is within a constantfar Another important class of invariants are those requirezbtdirm
of the running time of the uninstrumented version. The osadch that authentication protocols are being performed cdgrede
incurred by the instrumentation is close to 70%. About haths performed two experiments involving the Kerberos authatiton
overhead was caused by the overhead required to maintaintext  used by pysmb, a SMB client written in Python. These check tha
while the other half was the cost of maintaining invariants. all packets sent are authenticated, and that authenticdties not

We do not give the running time of the non-incremental in- occur more frequently than is necessary.
strumentation, as not even the smallest experiment wastable
complete in the time limit of 20 minutes. Since the query is ru
each time an AST node is created or updated, we expect the non
incremental version to incur an asymptotic slowdown. Inwatal
instrumentation eliminates this penalty, rendering iramrcheck-
ing practical.

Require valid ticket. For our first experiment, we want to verify
that there is a valid kerberos ticket associated with eachkgta
This invariant needs to remain true until the packet is digtsant.

To find violations of it, we keep a set of packets being serd, an
report an error if a packet in the set is associated with aalihv
ticket.

No shared child. Inan AST, no two parents may refer to the same

child. The following rule checks for violations of this invant: foreach (sp in $sending_packets,

kt in extent (KerberosTicket)

foreach (n in extent(ASTNode), m in extent(ASTNode), kt.invalid and kt.ip==sp.target_ip )
c in extent (ASTNode) : ¢ in n.children and report("Sending ", sp, " with invalid ticket!")
¢ in m.children and n!=m ): stop()
report("Child ", c, "is a child of both ", de in global:
m, "and ", n, "!'") $sending_packets=set ()
stop() at $x.send($p):

if type($x)==asyncore.dispatcher:
de in class type($x) in function handle_write($arg):
if $arg in $sending_packets:
$sending_packets.remove ($arg)
do after :
if $p not in $sending_packets:
$sending_packets.append ($p)

As this invariant accesses multiple extents, hash joinseayeired
to evaluate it efficiently.

Figure 2 shows that the running time of the incrementally in-
strumented program remains less than double that of thestunin
mented version. In contrast, the non-incremental instniat®n
would be cubic in the number of nodes currently alive in the- pr
gram, as it iterates over three extents of nodes. This leatis the
estimate that, in the best case, the non-incrementallyuim&nted This rule tracks all sends of data over asynchronous sqckets
program is Oftnode®) worse than the uninstrumented one. This, stops the program when a packet was sent to a server with an in-
coupled with the fact that the smallest program we look avero  valid Kerberos ticket. The de and do clauses work in the falig
400 AST nodes, accounts for the fact that all experiments man- manner: When &end method call is encountered, the packet be-
incremental instrumentation timed out. When we manualtyoin ing sentis added to the $sendipgckets queue. Itis removed from
duced a bug that would assign the same child to multiple pgren there once the packet is actually sent, which may not be saribs
checked-InvTS would stop when run, and give us a debuggiely sh  immediate. This is detected by intercepting the handiiee call-

Overall, these experiments show that verifying invariatisin- back in the class subclassing asyncore.dispatcher. Thimch is
time can be efficient (with overhead smaller then 80%) fomeve called by Python when a packet is actually sent out over thengi
complex queries that involve multiple joins and membersagis. socket.
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When we ran this on pysmb, while transferring a 10GB file over
a 100Mbit connection, the average CPU load increased fréft 3.
to 11.7%. The throughput remained the same because theaprogr

loaders upload to each other, making it possible for the filece
to support very large numbers of downloaders with only a mod-
est increase in its load. It splits torrents into chunks, mloads

was 10-bound in both cases. The increase is due to the join andall chunks from (likely different) peers, and then reassiesthe

the fact that many Kerberos tickets may have a matching IP. A
straightforward implementation increased CPU usage to, @it

original file(s) from chunks. Implementing a relatively cplex
protocol like BitTorrent may be error-prone, so we use outhoe

reduced the throughput of the program by 73%, as pysmb becameto instrument an implementation and check it for potentiedrs.

CPU-bound and not 10-bound. The times taken by the program to
transfer the file were 1302 seconds for the uninstrumentesiore
1351 seconds for the incrementally instrumented versioth 6821
seconds for the non-incrementally instrumented version.

Repeated authentication. It is bad practice for a program to
request tickets from the Kerberos server long before theently
valid ticket expires. Thus, a useful invariant to check iatth
successful authentication is not repeated until it expiremes
out. A timeout occurs when there has been no activity in tee la
300 seconds. To verify this invariant, we need to keep traoklad
kerberos tickets, of kerberos requests, and of SMB activity

The query we use is a nested query, with the inner query com-
puting the latest packet sent to a given host, and the outyqu
doing a join on all pairs of currently existing kerberos &tk The
max aggregate is maintained using a heap.

foreach (k_old
k_new
k_old.
k_old.

in extent (KerberosTickets) ,
in extent (KerberosTickets)
valid and k_new.valid and
timestamp<k_new.timestamp-10 and
k_old.ip==k_new.ip and
k_new.timestamp-max([p.time
for p in $sent_packets
if p.target_ip==k_new.ip]) < 300-10):
report ("Reauthenticated to host ", k_new.ip )
stop()
in global:
$sent_packets=set ()

de

at $x.send($p)
if type($x)==asyncore.dispatcher
do after :

$sent_packets.add ($p)

When run on pysmb, while transferring a 10GB file over a
100Mbit connection, the average CPU load increased frof 3.6
to 17.9%, mainly due to the need to maintain a heap per IP ssidre
and an additional join over the previous example. Using ifipec
domain knowledge, the heap could be avoided: we could juegt ke
a map of the latest packet sent to each IP address. We cansdo thi
because packets sent later are always later (time, and éysan,
p.time, is monotonic). A rule modified in such a way is lesslgas
adapted towards other uses, though. Note that even with #ire- m
tenance of the heap, the instrumented program is still 1@,ret
CPU bound. Just like before, to make it CPU bound requireskehe
ing invariants in a non-incremental manner. This resuls 96.9%
CPU load (indicating that the program is CPU bound), and eeeor
sponding increase in running time from 1302 to 8750 seconds.

The pysmb examples show that instrumenting complex pro-
grams in ways not assumed by their creators is easily dorte wit
our framework due to the ability to specify complex prograams-
formations, such as maintaining the set of sent packetbeamsdt of
packets waiting to be sent. It also demonstrates that congole-
ditions, including nested queries, are supported by thiméwork,
and their use does not cause excessive overhead.

4.3 Protocol implementation

BitTorrent (ttp://download.bittorrent.com/dl/) is a protocol for
distributing files. Its advantage over plain HTTP is that wheul-
tiple downloads of the same file happen concurrently, thendow

No duplicate data. While it does not necessarily imply an error

if one receives the same piece of data from two sources, dming
too often may mean that the client is using bandwidth inefity.

To check for this, we use a rule that detects when the same data
is received from two or more distinct sources, and logs thlenev
without stopping the program. The log could then be latelyaeal

to determine if the duplicate data indicated a larger bug.

foreach (pl in $incoming_queue, p2 in $incoming_queue:
pl.source_ip!=p2.source_ip and
pl.type=="incoming" and pl.payload==p2.payload):

report ("Receiving same data from peers ",

pl.source_ip, " and ", p2.source_ip)

in global:

# A queue supporting 0(1) membership tests,

# holding at most 100000 packets

$incoming_queue=queue (max_length=100000)

$x.type=$s

$s=="incoming" and type($x)==Packet

after :

if $x not in $incoming_queue:

$incoming_queue.append ($x)

at
if
do

The rule makes sure that we get notified that we receive the
same payload from two different IP addresses. It adds a gueue
which all incoming packets get added upon construction,thed
queries over this queue.

Experiments involved receiving a 10GB file from 30 peersyove
a 100Mbit connection. We measured CPU load to determine the
impact of the debugging rule. Without the rule, the averag§&JC
load was 28.3%. With the rule applied, the CPU load increased
to 36.1%. The small increase is due to the high selectivity of
the p1.payload==p2.payload condition. Internally, the join is
a combination of a reverse map lookup and hash join. Jusufitke
pysmb, neither the instrumented, nor the uninstrumentesiores
were CPU-bound, both remained 10-bound. Allowing arbitrar
code in the body of th€oreach loop allows us to very quickly
write a rule that just logs undesirable behaviour withoapping
the program, as we have done before.

No packet modificationin transit.  To verify that the correct data
is being sent between peers, we check the following invarian
packet sent from one peer must be received by another pdenuwit
a change in the payload.

We check this invariant by creating a server to which peerd se
summaries of the packets they send and receive. These parket
put into a set of packets, stored on the server. We write aydbet
detects when packets of the same chunk have a differentgshylo
(We compare the MD5 hashes of the objects).

BitTorrent uses instances of Packets (defined below) to ex-
change data, and, as we do not want the actual payload, but its
MD5, we set the body field of the packets to None.

class Packet:
def __init__ (self):
self .md5=None
self.source=None
self.target=None
self.chunk=None

2008/4/15



| NoCheck | Incremental

| No Type Analysis| No Alias Analysis| Non-Incremental

pysmb - Require valid ticket
pysmb - Repeated authentication
BitTorrent - No duplicate data
BitTorrent - No Packet Modificatior] 2.7% (1783s)

3.6% (1302s)
3.6% (1302s)

11.7% (1351s)| 19.7% (1819s)
17.9% (1535s)| 31.7% (2011s)
28.3% (1771s)| 36.1% (1779s)| 63.8% (1790s)
3.3% (1687s)

14.1% (1601s) | 97.3% (63219)
23.3% (1943s) | 96.9% (8750s)
36.3% (1830s) | 99.8% (3210s)

3.9% (1763s) 3.4% (1805s) 93.1% (1801s)

Table 1. CPU utilization and wall time taken for experiments unddfeding optimizations.

self.sent=False
self.received=False
self.body=None

The actual server is written as a single class with asetdield
that maintains all packets sent and received by BitTorreats We
omit code that actually sets up listening on UDP port 636 [
we chose), etc, as that code is very straightforward. THevidig
query actually verifies that the invariant is not violated:

foreach ($f in self.rec_set,$t in self.rec_set :
$£1=$t and

$f.source==$s.source and $f.source!=None and
$f.target==$s.target and $f.target!=None and
$f . chunk==$t.chunk and $f.chunk!=None and
$f.sent and $t.received and
$f .md5!=$t.md5 and $f.md5!=None):

report ("Packet sent from ", $f.source, " to ",

$f.target, " changed in transit!")
stop()

Finally, we present two InvTS rules that modify the BitTarre
program to send the information needed for invariant vexitmn
to the server. The rules state that a socket should be operibd t
server once per program, and that anytime a packet is wtéteny
socket, or read from any socket, the packet (minus the bduay)ld
be sent to the server. The rule for handlgwnd is the same rule as
for handlingrecieve, with recieve replaced withsend.

at $x.receive($p)
if type($x)==asyncore.dispatcher
de in global:
import socket
#0pen a socket to server on 192.168.17.46 port 636
$checking_socket=socket.open_udp(192.168.17.46,636)
in global in function(myreceive(socket,packet):
global $checking_socket
$body=packet.body
$arg.body=None
$checking_socket.send(packet)
packet.body=$body
instead:
myreceive($x, $p)

do

After applying the query and rules to the BitTorrent clientlaur
server, we then benchmarked the CPU utilization of the tdien
and the server (which were running on the same computerh Wit
5 BitTorrent clients and the server running, the CPU utiliza
increased from 73 to 78 percent. When the clients were medsur
in isolation, the CPU utilization of a single client (withettother
4 clients, and the server, if running, run on another systeag
11%, vs 10% for the untransformed client. The server, when ra
on the test machine (with the 5 clients run on a different riragh
utilized 3.3% of the CPU with the instrumentation enableztsus
2.7% with no instrumentation. This is a 13% penalty for wenif
the invariant.

On a reliable connection we found no problems. On a connec-
tion that was bad (where we manually randomly injected ckang

into the packets sent by the peers) we found the errors béfere
BitTorrent verification algorithm, which requires biggenunks,
would find them.

Effect of optimizations Table 1 shows the cpu utilizations and
running times of the pysmb and BitTorrent examples undéedif
ent implementation options. From this data, it is easy tdlsagthe
non-incremental implementation is far worse than any ottesr
sion. Disabling the use of type or alias analysis also presiuc
noticeable slowdown.

5. Related work

There are two different areas this paper touches: runtinagiamt
verification [7], and incremental query result maintenance

There is a large body of systems whose purpose is to ver-
ify temporal properties of subject programs. These incliaa-
MaC [12, 13], JPAX [11] , JNuke [1], and EAGLE [4]. These sys-
tems are very different from our system in that the invasahat
they verify are written as some subset of LTL. Our system s
support writing invariants in terms of LTL, although, as system
supports comprehensions, extents, and joins, a subsetlotamn
be emulated. The pysmb example does so by maintaining yistor
and specifying queries over it. While this does incur a penénce
penalty greater then dedicated systems designed to tesba$éd
invariants, it is not a very significant performance penalty

The category into which our system fits best is tools that use a
side-effect free subset of their host language, extendétarious
operators such as quantifiers or set operations, to spewdyiants
to verify. The invariant specification languages includeLJ¥7],
Spec# [3], and Jahob [15]. These languages are specifidatien
guages. They are used to describe the invariants to be deafiel
they rely on other tools to actually do the verification. RgiLJand
Spec# there exist tools that allow the user to combine/clentipé
specification of the invariant and the subject program intom-
piled program that, at runtime, verifies that the specifiedriants
hold. For Spec#, such a system is Boogie [2], for IML suctesgst
include jmlc [6], jass [5], jmle [14], and DITTO [21]. Jaholasa
run-time verifier in development [23].

Spec# does not support comprehensions[23]; nor does net sup
port extents. As such, it cannot easily encode the invariaetwish
to verify. JIML supports set comprehensions, quantifierd,aher
features. It does not natively support extents [16]. Jahqparts
both comprehensions and extents (as a subset of the Alides
set). The language presented in this paper supports botoset
prehensions and extents. It is worth noting that supporexoents
is difficult to emulate without having support for livenessting,
as the trivial method of adding all created instances to alces
not take into account garbage collection.

The JML compilers jmlic, jmle, and jass all support a large-sub
set of JML, including comprehensions. But, they evaluate-co
prehensions in a straightforward manner, by recomputirggnth
whenever they are encountered. This is in contrast with psi s
tem, which provides incremental maintenance of the valudhef
set comprehensions it supports. DITTO does provide incnéahe
maintenance of some JML expressions, but it cannot increatign
maintain set comprehensions [21].
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Another system, JQL [22], extends Java to support both cempr
hensions and extents, although it does not do this for thegses
of maintaining invariants, but rather for the purposes dérging

[13] M. Kim, M. Viswanathan, S. Kannan, |. Lee, and O. Sokglskava-
MaC: A Run-Time Assurance Approach for Java PrograResmal
Methods in System Desig?¥(2):129-155, 2004.

over collections in Java. Recent work on JQL adds incremhenta [14] B. Krause and T. Wahls. jmle: A Tool for Executing JML

maintenance of JQL queries in the face of updates to the deya t
depend on. The fact that our system is designed with onlyizmwg
verification in mind allows us to more efficiently maintairvani-
ants. For example, it is easier for us to handle removal ohetgs
from the sets that the query depends on. We support a mdyginal
larger set of conditions on queries: we can incrementallynma
tain query results for queries that contain a condition efftirm

a in b.f. Also, theat andde clauses allow us to do program
transformations that maintain datastructures that woeldriavail-
able to a query language, such as a set of all previously sekefs.

There has been a great amount of work done on incrementally

maintaining invariants, e.g, [9, 19, 10, 18, 21, 20]. Frorasth
especially relevant to this paper is the system we deve|ofhed
VTS) [18], that applies rules that incrementally maintairexy re-
sults. We use InvTS to apply rules that we derive from the-user
provided queries that specify the invariants the user wgisbeer-
ify. The advantage of InvTS is its utilization of static aysb to
reduce the runtime overhead of incrementally maintainirgyre-
sults of queries. The rules we apply are automatically eelrivi

a manner inspired by [20], which, while not being the only way
derive rules that perform incremental maintenance, tuoudo be

a very good fit to the queries whose results we wanted to nainta
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