
�����������	
���������
���
����
������
������

�����
�����

��������	
��

��������
���
������������
�������������
��������
������
�
���������������������������� ��
��
!�"�#��
��������
�$�%�

�����
�$�%�

���"��&&'()�

*�������
�������������
����+,������$����-��

�

ABSTRACT
We have implemented an interpreter (InvTS) for a declarative rule
language (InvTL) supporting invariant-driven transformations of
object-oriented programs. Using a library of rules, it can perform
incrementalization across object abstractions, allowing the pro-
grammer to write clear, straightforward code while relying on
InvTS to generate sophisticated and efficient implementations.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors – Code Genera-
tion, Optimization
D.2.1 [Software Engineering]: Requirements/Specification
D.2.3 [Software Engineering]: Coding Tools and Techniques
D.2.13 [Software Engineering]: Reusable Software

General Terms
Performance, Design, Languages

Keywords
Transformation Languages, Incrementalization, Refactoring, In-
strumentation, Python, May-Alias Analysis

1. INTRODUCTION
Abstraction is fundamental in computer science. It allows for encap-
sulation in systems and components by separating the “what” on
data and operations on the data from the “how”. This enables the as-
sembly of software components into complex software systems.

Operations on the data can be classified into queries or updates.
Queries compute results using data, and updates change data.

Implementation of queries and updates can vary significantly. In a
straightforward implementation, each operation does its respective
query or update and is clearly separated from other queries and
updates. Often, this leads to poor performance, as expensive que-
ries are repeatedly executed. Using incremental maintenance of
the results of expensive queries, a sophisticated implementation
can have good performance. However, the code for incremental
maintenance is less modular and more error-prone.

As the number of queries and updates grows, the situation be-
comes worse, especially when queries and updates cross compo-
nent boundaries. Considering all complex dependencies and
tradeoffs and deciding on how to maintain which results becomes

increasingly difficult. This produces code that is significantly
more difficult to write, understand, and maintain.

This presents a conflict between clarity and efficiency. Program-
mers could be significantly more productive if, while writing
clear, straightforward implementations, they could rely on auto-
mated tools to generate sophisticated and efficient code.

A method to resolve the conflict is presented in [4]. We present a
powerful system (InvTS / InvTL) that supports this method. It al-
lows each software component to be written in a clear and modu-
lar fashion in any supported object-oriented language. InvTS
identifies and analyzes queries and updates across object abstrac-
tion. Using a library of rules, it generates sophisticated and effi-
cient code that incrementally maintains results of repeated expen-
sive queries with respect to updates of their parameters.

InvTS is an interpreter for a declarative rule language (InvTL) that
supports invariant-preserving transformations of object-oriented
programs. InvTL is the language we use to write the incrementali-
zation rules presented in [4].

2. RULES
As in most transformation systems, a rule specified in InvTL con-
sists of a pattern that matches and then transforms code. The goal
of InvTS is to allow a programmer to write straightforward que-
ries, while InvTS automatically generates sophisticated code that
incrementally maintains the values of the queries. Thus, the main
parts of a rule are:

1. A pattern that matches a query.
2. Transformations that describe how to incrementally update

the result of the query when the values it depends on change.
The pattern that matches the query, coupled with the variable
that holds the result of the query is called an invariant, because
the rule makes sure that at all points in the program where the
query appears, the value of the variable containing the result is
always equal to the value of the query. The purpose of a rule is
to maintain an invariant. For each possible type of update to the
invariant, a rule must specify a way to maintain the invariant.
InvTL guarantees that for each update to an invariant, code that
maintains it is applied; if there is an update that the rule does
not describe, InvTS assumes that the programmer who wrote the
rule did not take this type of update into account, and that the
rule cannot be safely applied.

We now present a rule that maintains the size of a set in a Java-
like language. We assume that the set can only be modified via the
"add" and "remove" methods. We also assume that the "size"
method of the set class, Set, is O(n), and returns the size of the set.
We assume that Set has a "contains" method that is O(1).

Copyright is held by the author/owner(s).
OOPSLA’05, October 16–20, 2005, San Diego, California, USA.
ACM 1-59593-193-7/05/0010.

112

inv count={F.size()}
if (type(F)==Set)
(
 at {F.add(x)}
 do before {

if (not F.contains(x)){count=count+1} }

 at {F.remove(x)}
 do before {

if(F.contains(x)) {count=count-1} }
)

This rule shows the "inv", "if", "at", and "do before" clauses. The
"inv" clause declares the invariant. The "if" clause is used to
check that the pattern that we matched is actually an instance of a
Set. Each "at" clause defines a type of update to the invariant, and
the "do before" clause specifies the actions needed to maintain the
invariant. There also exist "do after" and "do instead" clauses.
These insert maintenance code after and instead of the code that
updates the invariant, respectively. The "de" clause, not shown
above, is used to specify modifications to code that are non-local,
such as adding new methods.

3. IMPLEMENTATION
InvTS currently supports Python as the language to be trans-
formed. It applies InvTL rules to the target Python code in the fol-
lowing way:

All rules in the rule library are repeatedly considered and applied
until no rule can be applied. To apply the rule to the input, InvTS
finds all matches to the query pattern. For each match, it then
identifies all places in the source that update the values the query
depends on. To do that for Python, InvTS need to perform may-
alias and data-flow analysis on the program. It uses Goyal’s may-
alias analysis [3], which is an efficient implementation of Choi's
alias-analysis algorithm [2]. The algorithm is not directly suited to
analyzing object-oriented programs, as it is designed for the C
language. It is designed to handle pointers with multiple level of
indirection. To apply the algorithm, we expand all assignments of
objects with more than one field into multiple assignments, thus
turning the program into a C-like program. This procedure is lim-
ited to object graphs that are not self-referencing. The rule is not
applied if any self-referencing structures are encountered in the
may-alias set of a variable that the query depends on. Both Choi's
algorithm and the expansion procedure require the control flow
graph (CFG) of the program, the construction of which is a non-
trivial problem for Python. We generate the CFG using the PyPy
framework [5].

After identifying all sites that update the values the query depends
on, InvTS attempts to match patterns in "at" clauses to all of these
sites, and, if successful, applies the transformations specified in
the corresponding "de" and "do" clauses.

4. EXPERIMENTS

We applied InvTS to a diverse set of problems. The most interest-
ing application was the automatic optimization of a straightfor-
ward implementation of Core RBAC [1] in Python [4]. RBAC is a
framework for specifying and determining access permissions to
various resources based on roles of users. RBAC can be used to
determine whether a given user has certain roles, whether a role is
allowed to perform an operation on an object, whether a user is al-
lowed to do the same, and other related queries.

The ANSI standard for RBAC is specified in the Z language. The
specification calls for sets to maintain the mappings among users,
roles, permissions, objects, and operations. The queries described
in the previous paragraph are specified as set comprehensions in
Z. As we were implementing it in the most straightforward man-
ner, the queries were implemented as Python comprehensions.

We have applied five rules to incrementalize the straightforward
RBAC implementation. These rules incrementally maintain five
different types of set comprehensions, such as {e for v in s if e1}.
An italicized variable denotes a variable; a bold variable denotes
an expression without side effects.

InvTS incrementalized seven queries. Even with just seven que-
ries, the size of the source code increased dramatically: the origi-
nal, straightforward implementation took 125 LOC, while the op-
timized implementation was 610 LOC. The complexity of the
source code also greatly increased. The straightforward RBAC
implementation was very easy to implement based on the specifi-
cation in Z. When we implemented the optimized version by
hand, the resulting code had a great number of cross-method de-
pendencies, making the implementation time-consuming and mak-
ing it difficult to prove its equivalence to the Z specification.

After the incrementalization, the automatically optimized ver-
sion was considerably faster, taking under a second to process
our largest example. The straightforward implementation took
over 5 seconds [4].

5. CONCLUSION
We have developed a language and a tool that can be used to eas-
ily specify and apply invariant-driven rules. This lets the pro-
grammer write clear and straightforward programs that, using a li-
brary of InvTL rules, are automatically transformed into efficient
and correct programs. This helps resolve the conflict between
clarity and efficiency by implementing a systematic method for
incrementalization across object abstraction [4].

Besides optimization, InvTS can be used for program instrumen-
tation, code refactoring, verification, and other purposes.

6. REFERENCES
[1] American National Standards Institute, Inc. Role-based access con-

trol. ANSI INCITS 359-2004. Approved Feb 19, 2004 ,
http://csrc.nist.gov/rbac/

[2] J-D. Choi, M. Burke, and P. Carini. Efficient flow-sensitive inter-
procedural computation of pointerinduced aliases and side effects.
In Proceedings of the 20th Annual ACM Symposium on Principles
of Programming Languages, pages 232--245, Jan 1993

[3] D. Goyal. Transformational Derivation of an Improved Alias Analy-
sis Algorithm. Higher-Order and Symbolic Computation, 18, 1/2 ,
Feb 2005

[4] Y. A. Liu, S. D. Stoller, M. Gorbovitski, T. Rothamel, Y. E. Liu. In-
crementalization across object abstraction. In Proceedings of the
ACM SIGPLAN 2005 Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA), Oct 2005

[5] PyPy Team. PyPy 0.6 - A Python Interpreter in Python, Jun 2005 ,
http://codespeak.net/pypy/

113

