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Abstract
High-level query constructs help greatly improve the clarity
of programs and the productivity of programmers, and are
being introduced to increasingly more languages. However,
the use of high-level queries can come at a cost to program
efficiency, because these queries are expensive to compute
and may be computed repeatedly on slightly changed inputs.
For efficient computation in practical applications, a power-
ful method is needed to incrementally maintain query results
with respect to updates to query parameters.

This paper describes a general and powerful method for
automatically generating incremental implementations of
high-level queries over objects and sets in object-oriented
programs, where a query may contain arbitrary set enumer-
ators, field selectors, and additional conditions. The method
can handle any update to object fields and addition and re-
moval of set elements, and generate coordinated mainte-
nance code and invocation mechanisms to ensure that query
results are computed correctly and efficiently. Our imple-
mentation and experimental results for example queries and
updates confirm the effectiveness of the method.

1. Introduction
High-level query constructs in programming languages help
greatly improve the clarity of programs and the productivity
of programmers, and are being introduced to increasingly
more languages. These query constructs, such as SETL set
formers [29], Python comprehensions [25], and JQL for
Java [34], allow queries over sets and objects to be written in
a concise and abstract manner. This allows the programmer
to focus on what is computed, rather than how to compute
efficiently.
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However, the use of high-level queries can come at a cost
to program efficiency, because they are expensive to com-
pute and may be computed repeatedly on slightly changed
inputs. To improve efficiency, the results of the queries need
to be stored and incrementally maintained when values the
queries depend on are updated. This can lead to drastic and
often asymptotic improvements in program running time, es-
pecially in programs where queries occur more often than
changes.

Currently, this incremental maintenance is mostly per-
formed by hand. Rather than writing a clear high-level query,
a programmer is forced to write code that maintains the re-
sult of a query in response to updates to values the query re-
sult depends on. This code can be complex and error-prone.
Even worse, because the updates may be spread throughout a
program, the code that incrementally maintains the query re-
sult may also be scattered all over the program, making the
program difficult to understand and maintain. If an update
occurs without the corresponding incremental maintenance,
the correctness of the query is compromised.

This leads to a conflict between clear high-level queries
and efficient incremental maintenance. Programmers are
forced to choose between clear yet slow implementations
and efficient yet complex implementations of the same
queries. This typically results in performance-critical code
being hard to maintain, and less important code being unnec-
essarily slow. Automatic incrementalization helps resolve
this conflict, by transforming clear high-level queries into
efficient implementations.

This paper describes a general and powerful method for
automatically generating incremental implementations of
high-level queries over objects and sets in object-oriented
programs, where a query may contain arbitrary set enumer-
ators, field selectors, and additional conditions. The method
can handle any update to object fields and addition and re-
moval of set elements, and generate coordinated mainte-
nance code and invocation mechanisms to ensure that query
results are computed correctly and efficiently. We also de-
scribe implementation and experimental results for example



queries and updates that confirm the effectiveness of the
method.

Our method is practical for several reasons. First, it pro-
cesses one query at a time and handles any updates to the
values that the query depends on, without requiring program
analysis, so it scales to programs of large sizes that may de-
pend on libraries and plug-ins. Second, the method does not
change the representations of sets and objects, so incremen-
talized modules can interact with the remaining modules. Fi-
nally, the method incurs overhead only on objects that an
object-set query depends on.

We expect the user to indicate queries that can be prof-
itably incrementalized. Once this is is done, all required code
is automatically generated. This allows the user to deter-
mine, perhaps experimentally, cases where incrementaliza-
tion will be profitable.

There is a large amount of prior work on incremental-
ization of programs and on incremental query evaluation, as
discussed in Section 10. However, to the best of our knowl-
edge, there is no existing method that can automatically in-
crementalize queries over arbitrarily aliased sets and objects
in object-oriented programs without changing representa-
tions of objects in the programs. This is a challenging prob-
lem because even simple queries can be affected by a large
number of different updates to the objects the query depends
on.

2. Language
Our method applies to any language that supports the fol-
lowing query and update constructs.

Queries. We consider queries of the following form, called
object-set comprehensions, or comprehensions for short.

comprehension ::= parameter+->

{ result exp : enumerator+ condition∗}

enumerator ::= enumeration var in selector
selector ::= variable | selector.field

parameter ::= variable
enumeration var ::= variable

result exp ::= expression
condition ::= expression

Intuitively, given values of parameters, a comprehension
returns the set of values of the result expression for all val-
ues of the variables that satisfy the enumerator and condition
clauses. We can see that a comprehension may contain arbi-
trary object field selections and set element enumerations.
We require that every variable in a comprehension appear as
either a parameter or an enumeration variable. We also re-
quire that the result expression and conditions be functions
of the values of the variables in the comprehension, i.e., they
can be any expressions whose values depend only on the val-
ues of the variables in the comprehension and that have no
side-effect.

Precisely, the result of evaluating a query can be given in
terms of the set of all possible variable assignments, called
the assignment set, of the query. A variable assignment maps
each variable in the query to a value. A variable assignment
is in the assignment set of the query iff (1) each parameter
of the query is assigned the given value of that parameter
and (2) each enumerator and condition clause in the query
is satisfied when evaluated under the variable assignment.
The result set of the query is the set formed by evaluating
the result expression under each variable assignment in the
assignment set. Note that nested queries can be formed by
supplying the result set of one query as a parameter to a
second query.

As a running example, we take the following query, mod-
eled on an authentication query found in the Django web
framework. To better demonstrate the method, we have both
simplified this query by removing one iteration, and made
it more complex by adding a check that the group is active.
The result set of this query contains the names of all per-
missions of all groups of all given users whose user id is the
given uid and that the groups are active.

users, uid ->

{ p.name : u in users, g in u.groups, p in g.perms,
u.id == uid, g.active }

In this query users is expected to be a set of User objects.
Each User object must have at least two fields: id containing
the user id and groups giving the set of Group objects the
user is in. Group objects also have two fields: active, a flag
that is true if the group is active, and perms giving the set of
permissions the group has. Permissions are represented by
Permission objects, each of which must have a name field
giving the name of that permission.

The query has two parameters, users and uid. Its result
expression is p.name. It has three enumerators: u in users,
g in u.groups, and p in g.perms; and two conditions: u.id
== uid and g.active.

We classify the variables used in the query into three
kinds. A constrained parameter is a parameter that is equated
to a selector, as uid is in the condition u.id == uid. All other
parameters to the query are unconstrained parameters. Non-
parameter variables are known as local variables, as they
are entirely local to the query scope. In the running example,
users is an unconstrained parameter; uid is a constrained
parameter; and u, g, and p are local variables.

For a given combination of unconstrained parameters,
our method incrementally maintains results such that queries
involving any combination of constrained parameters can be
answered in O(1) time. For our running example, when we
are maintaining the query over a given users set, we can
retrieve the results for any uid in O(1) time.

Changes. We decompose all changes to query parameters
into the following three kinds, and incrementally maintain
the query result under all changes of these kinds:



• adding an element to a set.
• removing an element from a set.
• assigning a value to a field of an object.

For the running example, the incrementally maintained
result of the query can be affected by the following up-
dates: adding to or removing from the users, u.groups, and
g.perms sets; and assigning to u.groups, u.uid, g.perms,
g.active and p.name fields. For incrementalization to be
correct, we must maintain the result in response to all of
these updates, which may be spread throughout the program.

Language for generated code. We use a standard object-
oriented language that supports operations on sets, maps,
and tuples and where all values are considered to be objects.

Table 1 describes the operations we use on sets, maps, and
tuples. All these operations take constant time, assuming that
hashing is used in the implementation of sets, including the
key sets and image sets of maps. Sets and maps are empty
when first created. The maps we use are multimaps that map
a key to a set of values, known as the image set. Image sets
are updated when the map is changed. We only create tuples
of a constant length.

s.empty() make s the empty set
s.add(x) add element x to s
s.remove(x) remove element x from s
x in s return whether x is an element of s
x not in s return whether x is not an element of s
m.add(x,y) add mapping from x to y to map m
m.remove(x,y) remove mapping from x to y from m
m.img(x) return image set of key x under m
(x1,...,xk) create a tuple with elements x1,...,xk

Figure 1. Operations on sets, maps, and tuples.

We use x == y to denote object identity comparison. It
returns true if and only if two values refer to the same object.
It is a constant-time operation.

For ease of presentation, in the generated intermediate
code, we use special for-loops of the form for (x1,...,xk) in
s: stmt, where s is a set of tuples of length k, and each xi

may already be bound to some value before the loop. Such
a loop iterates over the elements of s that match the pattern
(x1,...,xk)—elements where each component corresponding
to a bound component of the pattern equals the value of
the corresponding variable in the pattern. This can be done
in time proportional to the number of matched elements,
by maintaining a map from values of bound components
to values of unbound components, looking up the bound
components in the map in constant time, and iterating only
over the unbound components, as described in [27].

Other than the above, we use standard statements for
assignment (v = e), sequencing (stmt1 stmt2), branching
(if c: stmt), and looping (for v in s: stmt). We use
indentation to indicate scoping.

3. Overview of the method
Our method processes queries indicated by the programmer
one at a time, as queries can be incrementalized indepen-
dently. It handles all updates to values the query depends on.

To compute the result of a query efficiently in the pres-
ence of all possible changes to the parameters of the query,
we maintain the result incrementally with respect to the
changes. To do this, we first note that the result of a query can
be computed from scratch straightforwardly in two steps.
Step 1 computes the assignment set: it creates all possible
variable assignments allowed by the enumerators and puts
each such variable assignment into the assignment set, pro-
vided it satisfies all conditions. Step 2 computes the result
set: it iterates through the assignment set and puts the re-
sult of evaluating the result expression under each variable
assignment into the result set.

There are five main ideas for efficient incremental com-
putation. (1) We can compute the precise change to the as-
signment set after any change to the query parameters, called
differential assignment set, denoted D. (2) We can maintain a
query result efficiently using D by keeping a reference count
with each element in the result set. (3) We can return query
results efficiently for arbitrary parameter values by maintain-
ing a map from combinations of parameter values to query
results. (4) Since we cannot determine all possible values
of unconstrained parameters, we keep combinations of val-
ues of unconstrained parameters that have been queried on.
(5) To efficiently retrieve objects from field values, and sets
from members, as needed for efficient incremental computa-
tion, we can maintain inverse maps.

The differential assignment set, D. The differential assign-
ment set, D, is a set of variable assignments that would be
added to or removed from the assignment set by an update.
Generating code to compute it efficiently under all possible
changes is at the core of our method. D must be a set because
there is no efficient way, in the presence of arbitrary aliasing
of objects, to generate each added or removed assignment
exactly once.

Reference counts for elements in a result set. As mul-
tiple assignments may lead to the same value when evalu-
ated under a given result expression, to determine whether
a value should be in the result set when the assignment set
is updated, we must keep a count of the number of variable
assignments that produce that value. Addition and removal
operations to a result set maintain the reference counts, and
do the actual addition and removal of an element only if its
reference count changes from 0 to 1 or 1 to 0, respectively.

Result map, R. Instead of creating a new result set for
each query instance, i.e., a query with a combination of
actual parameter values, we maintain a map, R, called the
result map, that maps combinations of parameter values to
the result sets of the query. We can retrieve the result set



of a query from R, based on the parameter values, using
a constant-time access operation. This yields a result set
that changes as the result map does, which we call a live
result set. In many cases, this is acceptable, as the set is used
transiently and then discarded. Where necessary, a copy of
the result set can be made and returned, at cost linear in the
size of the result. Techniques exist for determining where
copying is necessary [11].

Values of Unconstrained Parameters, U. We cannot main-
tain query results for all possible values of unconstrained
parameters, because we do not know what the values might
be. We keep combinations of values of unconstrained pa-
rameters that have been queried once in a set of tuples, U,
and only maintain query results for these values of the un-
constrained parameters. Note that for each tuple in U, we
maintain query results for all possible values of constrained
parameters, because they are determined by the values of
unconstrained parameters through the constraining enumer-
ators. So we look up the query result in constant time if the
values of unconstrained parameters are found in U.

Inverse maps, invm and invf s. We also maintain the
following inverse maps. The map invm, where m stands
for member, maps an object to the sets that contain it; it is
the inverse of the usual mapping from a set to its members.
The maps invf , one for each field f , maps an object to the
objects referring to it through field f ; it is the inverse of field
selection.

These sets and maps are manipulated by the generated
code. D, R, U, and the inverse maps are all stored in vari-
ables that are unique to a comprehension; these variables are
bound to a single object in all the maintenance code gener-
ated for a comprehension, but are bound to different objects
in code generated from other comprehensions.

4. Generating code for computing the
differential assignment set

We need to generate code to compute the differential assign-
ment set, D, for each possible change to the data used by
the query. With the current representation of queries, called
the object-domain representation, changes include assign-
ing new objects to all chains of selected fields, and adding
and removing elements of all sets, in the query. To make it
much easier to enumerate all possible changes and generate
code, we translate the query into a pair-domain representa-
tion, enumerate changes and generate code in the pair do-
main, and then translate the code back to the object domain.

4.1 Translating to the pair domain
The pair domain uses sets of pairs to represent the field-
value relations and the set-membership relation, though
these sets do not exist in the final generated code. This al-
lows us to consider only the addition and removal of pairs

as changes. The translation also replaces each field selection
with a fresh variable, so every object that the query depends
on is referred to by a pair-domain variable. This makes it
easy to enumerate all possible changes that can affect the
result of a query.

Precisely, we use the following sets in the pair domain:

• For each field f , a set, fieldf , is used to relate any object
with the value of the field f of the object:

(o, v) ∈ fieldf ⇐⇒ v == o.f.

• A single set, member, is used to relate any set with any
member of the set:

(s, o) ∈ member ⇐⇒ o ∈ s.

Note that fieldf is used for same-named fields of different
objects in the pair domain, just like .f i is used to access
same named fields of different objects in the original object
domain. This makes it easy to automate the translation, while
not affecting the final code, since fieldf will be eliminated
in the generated code.

We translate a comprehension into the pair domain by
applying the following two rules repeatedly until they do not
apply:

• For each variable o and field f , replace all occurrences
of the field selection o.f with a fresh variable, say v, and
add a new enumerator (o,v) in fieldf .
• Replace each enumerator v in s, where v and s are

variables, with a new enumerator (s,v) in member.

This eliminates all fields and sets in the object domain.
Finally, we look for conditions of the form a == b. When

such a a condition is found, we eliminate it and replace all
instances of a with b. This will merge a local variable with
each unconstrained parameter.

For our running example, this yields:

users, uid ->

{ p name :

(users, u) in member,
(u, u groups) in fieldgroups,
(u, uid) in fieldid,
(u groups, g) in member,
(g, g perms) in fieldperms,
(g, g active) in fieldactive,
(g perms, p) in member,
(p, p name) in fieldname,
g.active

}

This replaces the 5 fields and 3 sets used in the object domain
with 6 sets in the pair domain, and increases the number of
variables used from 5 to 10. The advantage of this approach
is that every object that can be used by the query must now
be accessed through one of the variables.



4.2 Generating code for all possible changes
Recall we need to generate code to compute D for each
possible change to the data used by the query. Now we do
this in the pair-domain.

First, we explain that each change we must handle cor-
responds to an element addition and/or removal based on an
enumerator in the pair-domain comprehension. It is obvious,
from the translation, that each occurrence of a field selector,
and each retrieval of a set element, corresponds to an enu-
merator. So, each assignment to a field of an object and each
element addition or removal that can affect the query result
corresponds to an enumerator— each is indeed changing the
object referred to by the left variable in the enumerator. In
particular, we have the following:

• An enumerator of the form (o,v) in fieldf means that if
the field f of an object, say o0, that o refers to is assigned
a value v2, where the value of field before the change
is v1, then the corresponding changes we must handle
are removing the pair (o0,v1) from fieldf followed by
adding the pair (o0,v2) to fieldf .
• An enumerator of the form (s,o) in member means that

if an element, say o0, is added to a set, say s0, that s refers
to, then the corresponding change we must handle is
adding (s0,o0) to member, symmetrically for removing
an element.

Next, for each enumerator, we generate a block of code
for computing D for either adding an element or removing an
element from the set being enumerated. The same block of
code is used for both element addition and removal because,
for each enumerator, the variable assignments added to the
assignment set when an object is added to the set being enu-
merated are the same as the variable assignments removed
from the assignment set when the object is removed from
the set.

Note that the generated code refers to the element added
or removed. Thus, for removal, the generated code must be
run before the removal, and for addition, the generated code
must be run after the addition.

Generating code here has two steps. Step 1 creates the
clauses that compute the assignment set; this is independent
of the enumerator considered. Step 2 determines a nesting
order of these clauses that minimizes the cost of executing
all clauses, based on the enumerator considered.

Generating clauses. We generate one clause for each enu-
merator and each condition in the pair-domain comprehen-
sion. For each enumerator (x,y) in s, a for-clause of the fol-
lowing form is generated:

for (x,y) in s:

For each condition c, an if-clause is generated:

if c:

We also generate a single for-clause to iterate through the
values of the unconstrained parameters in U:

for unc params in U:

where unc params is a tuple of the unconstrained parame-
ters of the comprehension.

For our running example, consider the change that adds g
to u groups. The following clauses are created:

for (users, u) in member:

for (u, u groups) in fieldgroups:

for (u, uid) in fieldid:

for (g, g perms) in fieldperms:

for (g, g active) in fieldactive:

for (g perms, p) in member:

for (p, p name) in fieldname:

if g.active:

for (users) in U:

Nesting clauses. The basic idea of choosing a nesting or-
der is to use the bound values of the variables in the given
change to maximize lookups, which take constant time, and
to minimize iterations, which have a linear factor. The high-
level effect is to minimize the amount of work in incremental
computation caused by a change. Doing this exploits the fact
that bound variables in a special for-statement use lookups to
reduce the amount of iteration needed. While an optimal or-
dering could be produced, using precise set sizes in the enu-
merators and costs of the conditions, by a powerful combina-
torial optimization algorithm, we have found that using only
the distinction between constant time and linear time (in any
set size), based on boundness of the variables, with a simple
greedy algorithm, works well when information about set
sizes and selectivity is absent. If such information is avail-
able, this can be treated as a join-order optimization prob-
lem.

The greedy strategy picks a clause that has the minimum
asymptotic running time to execute next, given the set of
variables bound so far. The set of bound variables initially
contains the variables that appear in the change. This set is
used to analyze each clause, using the rules below, to deter-
mine if a clause is runnable, and if so, what the asymptotic
running time is. A runnable clause with the smallest asymp-
totic running time is chosen, and added to the nesting order.
The variables bound by that clause are added to the set of
bound variables, and the process is repeated until all clauses
are added to the order. Rules for analyzing the clauses are as
follows:

• A special for-loop that iterates over a fieldf set is
runnable if at least one variable in the pattern is bound;
this avoids iterating over every object in the program.
This for-loop takes constant time if the first variable in
the pattern is bound, because it is a field selection, and
linear time otherwise.



after adding g to a set that u groups refers to:

for (g, g active) in fieldactive:

if g active:

for (g, g perms) in fieldperms:

for (g perms, p) in member:

for (p, p name) in fieldname:

for (u, u groups) in fieldgroups:

for (u, uid) in fieldid:

for (users, u) in member:

if (users) in U:

D.add(var asgn())

Figure 2. Generated pair-domain code for computing D for
the running example.

• A special for-loop that iterates over the member set is
runnable if at least one variable in the pattern is bound;
this avoids iterating over every set in the program. This
for-loop takes constant time if both variables in the pat-
tern are bound, because it is a set membership test, and
linear time otherwise.
• The special for-loop that iterates over U is always runnable.

It takes constant time if all variables in the pattern, i.e.,
all unconstrained parameters of the query, are bound, and
linear-time otherwise.
• A if-clause is runnable if all of the variables in it are

bound. All if-clauses are considered to take constant
time by default.

A nesting order will always be computed, ensured by the
clause that iterates through U. This is because the defini-
tion of object-set comprehensions ensures that every vari-
able is reachable, through a path containing selection and
enumeration, from at least one unconstrained parameter.
As each selection and enumeration corresponds to a pair-
domain clause, there is a path of pair-domain clauses from
the unconstrained parameter to the variable. When the un-
constrained parameters become bound by the statement iter-
ating over U, all for-loops will become runnable, allowing
all variables to be bound. This then ensures that every if-
statement is runnable, allowing every statement to be placed
in the nesting order.

Once all variables are bound to some values, these vari-
ables and values are used to create a variable assignment,
which is then added to D. Let var asgn() be a function that
creates a variable assignment for these variables using their
bound values. Figure 2 shows the generated code in the pair
domain for computing D under one update that affects the
result of the example authentication query.

4.3 Translating back to the object domain
This translation eliminates field and member sets in the
pair domain, and replaces special for-loops with standard
statements. The translation uses the rules in Table 1. It gives

code for special for-loops over the fieldf sets and over
the member set, and for all three possible combinations of
boundness of the two variables in the pattern—note that our
method for nesting clauses ensures that, for iteration over the
fieldf sets and the member set, we do not have the case that
both variables are unbound.

• When both variables are bound, loops over fieldf sets
are field-value tests, and loops over the member set are
membership tests.
• When the first argument is bound but the second is not,

loops over fieldf sets are field selections, and loops over
the member set are element retrievals.
• When the second variable is bound but the first is not,

inverse maps are used for reverse retrievals for both field
selections and element retrievals.

pair-domain
construct

for (x,y) in fieldf:
block

for (x,y) in member:
block

x bound
y bound

if y == x.f:
block

if y in x:
block

x bound
y unbound

y = x.f
block

for y in x:
block

x unbound
y bound

for x in invf .img(y):
block

for x in invm.img(y):
block

Table 1. Rules for translating back to the object domain.

In the third case, we also generate code for incrementally
maintaining the inverse maps, as given in Table 2; it is easy
to see that these maps take constant time to maintain and
have a constant-factor space overhead.

Note that computing D for a change uses these inverse
maps. Thus, for element addition, inverse maps must be
updated before computing D, and for element removal, the
inverse maps must be updated after computing D.

The special for-loop over U is implemented similarly. If
some variables in the pattern are not bound, we maintain a
map from values of bound variables to values of unbound
variables. These maps are incrementally updated when U
changes. This allows each matched element to be retrieved
in constant time, and the entire for-loop to take linear time
in the number of matched elements.

For our running example and update, the code in Figure 3
is generated, along with code that maintains the invgroups

and invm inverse maps.



for (x,y) in fieldf:
block

for (x,y) in member:
block

when an object is first
referred to by x:

invf .add(x.f , x)

before assignments to x.f:
invf .remove(x.f , x)

after assignments to x.f
invf .add(x.f , x)

when an object is first
referred to by x:
for y in x:

invm.add(y, x)

before x.remove(y):
invm.remove(y, x)

after x.add(y):
invm.add(y, x)

Table 2. Rules for generating code for maintaining inverse
maps.

after adding g to a set that u groups refers to:

g perms = g.perms

g active = g.active

if g active:

for p in g perms:

p name = p.name

for u in invgroups.img(u groups):
uid = u.id

for users in invm.img(u):
if (users) in U:

D.add(var asgn())

Figure 3. Generated object-domain code for computing D
for the running example.

5. Generating Code for Maintaining the
Result Map

Once the differential assignment set D is computed, it is
used to update the result map R. For each block of code that
computes D, we generate another block of code that updates
R.

For maintenance after assigning a value to a field or
adding an object to a set, we generate the code below, where
params(a) takes a variable assignment a and returns a tu-
ple containing the values of the parameters of the query, and
eval(e,a) evaluates expression e under the variable assign-
ment a. Both params and eval can be replaced with simple
executable code, so no language-level eval support is neces-
sary. D is reset to empty after it is used for updating R, and
thus is empty and takes no space when we are not executing
maintenance code.

for a in D:

R.add(params(a), eval(result exp, a))

D.empty()

For maintenance before assigning a value to a field or re-
moving an object from a set, the generated code is the same
as above except with add replaced with remove.

The result map maintenance code must be run after all
code for computing the set D for a given change has been
run, to prevent aliasing from causing problems. The discus-
sion section elaborates on our handling of aliasing.

6. Organizing Maintenance Code
Three kinds of maintenance code have been generated: (1)
code that maintains inverse maps, (2) code that computes D,
and (3) code that maintains R. They must be run in response
to updates to objects, including set objects. Coordinating the
invocation of different kinds of maintenance code is critical
for the correctness of the method.

We organize maintenance code based on the pair-domain
variables. This is for two reasons, from Section 4: (1) each
object that the query result depends on is referred to by a
pair-domain variable, and (2) each block of maintenance
code generated is for an update to an object that a pair-
domain variable refers to, or when the object is first referred
to by the variable. We put together, conceptually, all main-
tenance code that handles updates to the object referred to
by a pair-domain variable v, and we call it an obligation any
object referred to by v must fulfill; we use v as the id of
the obligation. Note that an object may have multiple obli-
gations, because it may be referred to by more than one pair-
domain variable, due to aliasing. Obligations are assigned to
objects, not variables or fields, and so the obligation will be
triggered whenever the object is updated, even in the pres-
ence of aliasing.

Recall that, among the three kinds of maintenance, R
must be maintained after D is computed, and for addition,
inverse maps must be maintained before D is computed and
R is maintained, and all three must be done after the addition,
while for removal, inverse maps must be maintained after D
is computed and R is maintained, and all three must be done
before the removal. When an object has multiple obligations,
we run the maintenance code of the same kind from all
obligations, before running maintenance code of another
kind, for the same reasons as before. Note that R is only
updated once, by the first block of maintenance code for R,
because D is reset to empty at the end of it, and later blocks
of code have no effect.

Obligations are assigned to objects using the function
assign obligation. It takes an object o and an obligation
’v’ as arguments. It does nothing if o is already assigned
obligation ’v’. Otherwise, it (1) runs any maintenance that
needs to be run when o is first referred to by variable v,
and (2) registers the maintenance code corresponding to
v, separately for addition and removal of course, with o,
so that it is called when addition and/or removal occurs.
Maintenance code for (1) includes code for updating inverse



maps, as in Section 4.3, and assigning obligations to other
objects, as described below. Implementation for (2) depends
on the host language, which we will describe for Python, in
Section 9; similar ideas apply to other languages.

Two mechanisms are used to assign obligations to ob-
jects. Obligations are assigned to unconstrained parame-
ters by the query execution code discussed in the next sec-
tion. Obligations are assigned to enumeration variables, i.e.,
constrained parameters and local variables, by maintenance
code associated with other obligations. To bound the time
spent assigning obligations, obligations are never removed
from objects.

Assigning obligations to enumeration variables. The
code that assigns obligations to enumeration variables is
generated following a reachability-based approach. We start
by initializing a set, called the set of supported variables,
to the unconstrained parameters of the comprehension. We
then search for a pair-domain enumeration of the form:

(x,y) in s

where x is in the set of supported variables, and y is not. This
clause is then used to create obligation assignment code, as
given below, and y is added to the set of supported variables.
This process repeats until all variables are added to the set
of supported variables. This process will always complete
because all variables are reachable from the unconstrained
parameters.

The obligation assignment code generated depends on the
set s in the enumeration. If s is a fieldf set, we generate the
following code:

when obligation ’x’ is assigned to an object referred to

by x:

assign obligation(x.f , ’y’)

when an object with obligation ’x’ has field f assigned:

assign obligation(x.f , ’y’)

If it is the set member, we generate:

when obligation ’x’ is assigned to an object referred to

by x:

for i in x:

assign obligation(i, ’y’)

when an object with obligation ’x’ has element i added:

assign obligation(i, ’y’)

Note that obligation assignment code is classified as main-
tenance code of kind (1), because it is done when an object
is first referenced by a variable, which also causes inverse
maps to be updated.

The method above ensures that if an object is ever re-
ferred to by a variable v, the object is assigned obligation
v. An obligation assigned to an object is never removed
from the object. So, the cost of assigning obligations is con-

stant amortized over object creation, element addition, and
field assignment. However, the maintenance code may be
run even after an object can no longer affect the result of
a query, until it is garbage collected.

7. Generating Code for Executing the Query
Finally, we generate code for query execution. Recall that
we keep combinations of values of unconstrained parameters
that have been queried on. Each query, for a combination of
values of unconstrained parameters, is computed once from
scratch—the first time it is encountered; after that, the query
result is incrementally maintained.

The query execution code first determines if the query is
being incrementally maintained, i.e., if a tuple consisting of
the values of the unconstrained parameters is in the set U.
If it is, then the incrementally maintained result is returned.
If not, the query execution code computes the result from
scratch, and begins incremental maintenance; this has four
steps:

1. Call assign obligation to assign obligationp to the ob-
ject referred to by each unconstrained parameter p. This
will then ensure that obligations are assigned to every ob-
ject the query depends on.

2. Add a tuple of the values of the unconstrained parameters
to the set U.

3. Compute D for the addition to U in Step 2, using the
method in Section 4. Note that this code will want to
have variables that range over possible values of the un-
constrained variables, so we introduce a new variable for
each unconstrained variable. (For example, uid for uid.)

4. Maintain the result map, using the method in Section 5.

At the end, the values of the unconstrained parameters are
used to retrieve a live result set from the result map. This set
is the result of the query.

For our running example, the generated query execution
code is given in Figure 4.

8. Discussion

Correctness. To be correct, our method must maintain the
invariant that the reference count of values in R are the
number of assignments that would map to that value. The
differential assignment set computation code determines the
assignments added to or removed from the assignment set.
This code is correct because it is simply an execution of
the original query with the variables involved in an update
bound; updates can only affect assignments containing the
objects involved. The D set contains the assignments that are
added to or removed from R, thus ensuring that the invariant
holds.



if (users) not in U:

assign obligation(users, ’users’)
U.add((users))

for u in users:

uid = u.uid

u groups = u.groups

for g in u .groups:

g active = g.active

if g active:

g perms = g.perms

for p in g perms:

D.add(var asgn())

for a in D:

R.add(eval((users, uid ), a), eval(ap ssid, a))
D.empty()

return R.img((users, uid))

Figure 4. Generated code for executing the query for the
running example.

Aliasing. Our method uses the D set to ensure that the
reference count is maintained correctly in the face of aliasing
between objects. For example, consider the query:

p -> {x : x in p.S, y in p.T , x == y }

When p.S and p.T are aliased to the same set, say called
ST . When an object, say o, is added to set ST , maintenance
code for additions to both p.T and p.S must be run. The set
D will have the variable assignment {x 7→ o, y 7→ o} added
to it twice, while the result x will only be added to R once.
This is important if p.S is changed to point to a set other
than ST . In that case, the assignment will be only added to
D once, and so x will be removed from R once. If R was
updated directly instead of using D, the reference count of R
would be incorrect.

If it is proved that no aliasing can occur between the pair-
domain variables used by the query, then it’s possible to have
the maintenance code update R directly. This eliminates the
time required to iterate over and clear D, as well as the
memory used by that set.

Memory usage. As incrementalization improves program
performance by storing and updating the results of compre-
hensions, it will increase memory usage. R takes the space
required to store the result of each query for which we main-
tain results; we maintain results if the unconstrained param-
eters are in U. The invm and invf maps require space pro-
portional to the size of the objects assigned obligations; this
adds constant overhead. While inside maintenance code D
uses space equal to the number of assignments generated,
but it is empty when the program executes outside of mainte-

nance code. We expect the programmer using the method to
understand these, and only ask for incrementalization when
the memory overhead is acceptable.

Performance. To allow the second and later executions of a
query to occur in constant time, our method requires that
updates to data maintain the result map. The cost of this
maintenance depends on the structure of the comprehension
and the update.

To evaluate the query in our example from scratch takes
running time O(users ∗ groupsuser ∗ permsgroup), where
groupsuser means the number of groups each user has.
When the user is known, such as when adding or removing
a user or updating u.uid or u.groups, the running time is
O(groupsuser ∗ permsgroup). When the group is known,
such as when added to or removed from a set or updating
g.active or g.perms, the running time is O(usersgroup ∗
permsgroup). Finally, when a permission is known, via an
update to a permissions set or p.name, the running time is
O(groupsperm ∗ usersgroup).

Our maintenance code is asymptotically faster than re-
computation code when the values of the variables bound at
an update allow some iterations to be eliminated, and thus,
our method will always produce an asymptotic speedup as
long as the frequency of updates is not asymptotically higher
than that of queries. In no case does our method produce
incremental update code that is asymptotically slower than
code that executes the query from scratch, because the worst-
case maintenance code is identical to recomputation code;
therefore, when the frequency of queries is asymptotically
the same as that of updates, our method will never produce
an asymptotically slower program.

When the frequency of queries is asymptotically less than
that of updates, our method may produce slower programs,
depending on the running times of maintenance code. We
rely on the programmer to not choose incrementalization in
these circumstances. As our method analyzes the asymptotic
running times of maintenance code when deciding the nest-
ing of clauses during code generation, it can be easily ex-
tended to report these times statically.

Extensions. Our method allows many extensions and addi-
tional optimizations, such as handling tuples in queries (by
translating them into objects and back), supporting aggre-
gate operations (such as count and sum), and simplifying the
generated code (by eliminating pair-domain variables that
mirror fields).

9. Implementation and Experiments
To evaluate our method, we developed an implementation
in Python. Our implementation consists of a single Python
module, named incr.py. It consists of 711 lines of Python
code, and requires only the Python standard library to run. It
provides as a public interface a single function, run_query.
This function takes as arguments a comprehension, repre-



Figure 5. Time taken to perform a varying number of up-
dates and queries, using our running example.

sented as a string, and values for the parameters of the com-
prehension, and returns the result of the query. The function
first checks to see if it has encountered the query before. If
not, it generates obligation and query execution code cor-
responding to the query, passes the parameters to the query
execution code, and returns the result.

We implement obligations by creating classes. Each ob-
ject in the system starts with an initial class, the class it was
initially created with. For each combination of initial class
and set of obligations, we create a new class that inherits
from the initial class and runs the maintenance code in the
obligations. When an obligation is assigned to an object, we
find the class corresponding to the object’s initial class and
the set of obligations. We assign this new class to the object,
an operation Python allows. We then run any initial code re-
quired by the obligation being assigned to the object.

Our experiments were run on a computer with an Intel
Core 2 Duo processor running at 2.13GHZ. Our experimen-
tal code is written in Python, using Python 2.5.1, running un-
der Ubuntu Linux. All times reported are CPU usage. They
do not include the time used for code generation, which was
about 0.2 seconds for the running example and can be done
before program execution.

All programs our method has been applied to have been
written by us. Some may object to this, preferring that our
method be applied to programs written by others. However,
most programs are written with efficiency in mind, and the
programmers generally incrementalized the repeated expen-
sive computations by hand. Our method would not improve
the performance of such programs. Instead, our method al-
lows programmers to write simpler, more readable, and more
maintainable programs, and perform incrementalization au-
tomatically.

Figure 6. Time taken to perform 10,000 queries, for a vary-
ing number of electronic patient records.

Running example: authentication query. The experiment
we performed using our running example query consists
of creating a number of users sharing a single group, then
adding a varying number of permissions to that group, per-
forming a query to find the permissions granted to one of
the users. This experiment was performed using both non-
incremental and incremental implementations of the code.
As the performance of the incrementalized implementation
depends on the number of users, we varied the number of
users between 100 and 300, fixing the number of users at 100
for the naive version. The number of permissions was varied
between 50 and 500. For a given number of permissions the
experiment was repeated 50 times, with the reported times
being the average of 50 runs.

Figure 5 gives the result of this experiment. This graph
shows that the running time for the naive non-incremental
version is quadratic in the number of permissions created,
while the running time of the incremental version is linear
in both the number of permissions and the number of users.
This is what is expected from our method. We also note that
the incremental implementation moves most of the running
time from queries to updates, so in systems with many more
queries than updates (such as the authentication system this
query is based on), our method is much faster than naive
code.

We also ran the experiment against a Postgres database,
which was far slower than our in-memory query code. For
a query with 500 permissions and 100 users, the database
query took 2570 milliseconds, versus 8 for the incremental-
ized code.

Electronic health record policy. We have also written an
object-oriented version of the United Kingdom’s Electronic
Health Record (EHR) service policy, based on the specifi-
cation by Becker [5], and applied our automatic incremen-



Codegen Lines AST
Query time (s) Updates of Code Nodes

Current Students 0.43 11 526 3976
New Students 0.42 11 524 3853
Old Students 0.42 11 524 3870

Fresh Students 0.06 4 85 486
Fellowship Students 0.24 9 345 2298
TAs and Instructors 0.51 16 689 4657

TAs 0.03 3 45 237
Old TAs 0.09 5 126 813
New TAs 0.09 5 126 813

New TA Emails 0.26 11 412 2478
TA Waitlist 0.36 12 528 3423
Good TAs 0.18 8 267 1726

Qual Exam Results 0.46 13 614 4723
Advisors by Student 0.43 12 558 4236
Students w/o Advisor 0.32 10 452 3038

Advisor Overdue 0.41 11 522 3764
Prelim Exam Overdue 0.24 9 340 2274

Table 3. Code generation statistics for student management
system.

talization method to it. The following query corresponds to
a rule that determines if a clinician is authorized to view a
patient’s electronic patient record into an object-set query:

org, cli ->

{ record: tm in org.team memberships,
tm.cli == cli,
tm.spcty == cli.spcty,
record in org.records,
record.group == tm.team }

It finds the set of records a clinician is authorized to view,
based on his team memberships and specialty.

To demonstrate how our method improves the query per-
formance, we populated the database with a single clinician,
team, and team membership, and with a varying number of
records, all of which are accessible to members of the team.
We then measured the time to perform 10,000 queries that
determined the records accessible to the clinician.

Figure 6 shows the results of this experiment. The non-
incrementalized implementation obviously takes linear time.
Our incrementalized implementation also takes linear time,
although with a very shallow slope. Our method causes the
first query to take linear time in the number of records, while
the second and later queries take a constant amount of time.
This gives substantial time savings when the database is
large.

Student information management system. Finally, we
have applied our method to a set of queries developed to
manage the records of graduate students in our department.
This system is highly object-oriented because of the tempo-
ral nature of much of the data. For example, each Student

Figure 7. Time required for 100 student queries, for a vary-
ing number of students.

object has a programs set, which is a set of Program objects.
Each Program object stores the program that the student is in
(one of ’ms’ or ’phd’), as well as start and end dates for the
program. In this way, the history of a student can be main-
tained as the student proceeds through our graduate program.

This system is developed to extend an existing system,
and as part of this effort, we have written a total of 54
comprehensions, most of which are queries in the original
system, and the rest are queries for data conversion. We
wrote each comprehension in as straightforward a manner as
we could, without considering our method or any efficiency
issues.

Our system is able to incrementalize 52 of the 54 queries.
The two queries our method did not incrementalize involve
aggregation of results, which we are yet to implement. This
shows that our method can handle many interesting queries.

Of the 52 queries our method can incrementalize, we
identified 17 frequently used queries. Table 9 shows the
statistics we collected for incrementalizing these 17 queries.
For each query, we report the code generation time, the
number of updates incrementalized, the number of lines of
code generated, and the number of AST nodes generated.
The number of updates approximates the number of methods
that would need to be modified to run the maintenance code.
It’s a good approximation of the number of places in the
program that need to be changed to incrementalize it. The
number of lines of code and the number of AST nodes (used
by Python’s compiler module) provide a measure of the
complexity of these changes. All told, in less than a total of 5
seconds, we are able to generate the equivalent of thousands
of lines of code, code that is automatically added to objects
that a query depends on.

An example query from this system is the New Students
query, which finds all students who either joined the de-



partment in a given semester or have changed program that
semester. This query reads:

students, sem ->

{s : s in students,
p in s.programs

if s.joined == sem or

p.start != null and p.start == sem }

We store information about a student’s program in a set of
Program objects. When a student changes program, those
Program objects store the start and end dates of the old
program and the start date of the new program.

We use this query to experiment with changing fields.
In this experiment, we created a varying number of Student
objects. For each of 100 iterations, we choose a student from
the set, choose one of its Program objects, and alter the
starting semester. We then perform the query.

Figure 7 shows the result of this experiment. As expected,
the non-incremental version of the program takes linear time
to run. The incremental version also takes linear time, but
with a much lower slope. The bulk of the time is taken up
in the initial computation of the incrementally maintained
result, as can be seen by running the incremental version a
second time on the same data, and noting that the running
time remains constant.

Other languages. While our experimental implementation
is for Python, our method is suitable for use with a variety of
languages. We require the ability to intercept field modifica-
tion and set access. Set access is easy to intercept, as one can
add hooks to the various set methods. Intercepting field ac-
cess is generally supported by dynamic languages, but may
require VM or bytecode modification in languages like C#
and Java. One approach would be to attach to each object
a strategy object that controls how fields are altered. When
an obligation is added to an object, the strategy object is re-
placed with one that runs the obligation code. This method
can work with one strategy object for each class and each
possible set of obligations that can be assigned to the objects
of that class.

Our current implementation is a Python module that takes
queries as strings. This is somewhat less than ideal, as it
means that queries are neither syntax-checked nor type-
checked before they are executed. If languages and asso-
ciated tools had support for object-set query syntax, such
checking can be easily done. The advantage of our current
approach is that it can be dropped into an unmodified Python
interpreter, making it more immediately useful.

10. Related Work and Conclusion
Incrementalization of programs has been a subject of much
research, and automatic incrementalization techniques have
been developed for queries in many areas. Our method im-
proves over previous methods in two main respects, putting

aside many finer distinctions. First, our method handles a
query as a whole, while most previous methods decompose
it into smaller queries that need to be maintained indepen-
dently, which may have additional cost in time and mem-
ory. Second, our method incrementalizes high-level queries
in object-oriented programs, while previous methods handle
only sets and tuples, use representations of objects that are
not suitable for incrementalized modules to interact with the
remaining modules, or incrementalize only with the granu-
larity of method calls.

The earliest work in this area was intended to provide a
way of performing strength reduction on sets and maps [9,
10], ultimately yielding the finite differencing method [24,
31]. This work, while automatic, only considered sets and
pairs, and decomposed queries to incrementalize them. Fi-
nite differencing also requires finite differencing rules to be
given manually. Our method can derive most of those rules
automatically.

In database area, techniques for incremental view main-
tenance over sets of tuples, as in relational databases, have
been known for a long time [33, 6]. Finite differencing was
applied to the problems of integrity constraints [17, 23] and
incremental view maintenance [26, 14] in databases contain-
ing sets of tuples. It has also been extended to support views
with duplicates [13]. These methods work by decomposing
queries into incrementalizable parts. A method exists that
handles a query as a whole and reference-counts intermedi-
ate results [15], as ours does the result map. However, all
these methods do not handle objects.

Another approach used for incremental view mainte-
nance, in both relational [7] and object-oriented [3, 2]
databases, is to use a database engine to perform queries
with some parameters bound. This is similar to our strategy
that computes D without decomposing a query into sub-
queries. Unlike these techniques, our method generates code
for computing D and does not require executing queries in a
database engine.

A number of other methods deal with incremental view
maintenance in object-oriented databases. These methods
either create their own copies of objects used during in-
cremental maintenance [35, 18], or require the system to
represent objects in ways not suitable for program execu-
tion [4, 12, 22]. In contrast, our method can use existing
objects and allow queries to return existing objects, with-
out changing object representations, and we only require that
objects support the ability to intercept method and field ac-
cesses. This allows our incrementalized components to be
usable in the same way in all the contexts they were usable
before.

The problem of choosing an optimal order for nesting
clauses when generating code for computing D is similar
to join order optimization [16]. The optimal solution to this
problem is known to be NP-complete. While a number of
approaches to solving this problem exist [32], these require



estimates of the size of each set used and the selectivity of
each join performed. When the code for computing D is gen-
erated, much of this information might not be available. Our
heuristic produces good and reasonable results for object-
oriented programs when such information is not available,
but the method can be extended to use such information
when the information is available. Note that, in either case,
our method takes into account the different costs of execut-
ing the same special for-loop in different code contexts.

There has also been work on incrementalizing object-
oriented programs. One method is based on applying manually-
written incrementalization rules which depend on compre-
hension structure [21, 19]. These rules need to explicitly
deal with each possible update under all combinations of
aliasing. Our method generates this code automatically.

While our method incrementalizes high-level queries in
object-oriented programs, other methods in incremental-
ization of programs are developed for languages based on
sets or bags [24, 31], functional programs [20, 1], logic
programs [28], and queries [8] and functions in OO pro-
grams [30]. The last two are the most closely related and is
discussed separately next.

The Ditto system [30] incrementalizes queries that con-
sist of recursive functions in Java, using a method similar
to those for incrementalizing functional programs [1]. This
method works by memoizing the results of method calls, and
recomputing a stored result of a method call when a field
changes or when the result of a call changes. Recomputa-
tion is done by re-running the method call, hence Ditto has a
method-call-level granularity. Thus, any update to data used
by a high-level query in a method will result in recompu-
tation of the entire method including the entire high-level
query. Ditto also restricts the results of queries to be of prim-
itive types, while our method allows the results of queries to
be sets of elements of any type.

The research most similar to ours is the incrementaliza-
tion for the JQL system [34, 8]. The incremental update code
for JQL works by creating tuples of objects based on changes
to sets. This works for JQL as all objects used by an incre-
mentally maintained query must be contained in a set given
as a query parameter. The class of queries our method sup-
ports is larger than that of JQL, as we support sets and ob-
jects that refer to sets, and incremental maintenance involv-
ing updates to fields of objects that are referred to by fields of
other objects. Finally, the lack of result expressions in their
language prevents aliasing from occurring, but may supply
the programmer with the same object more than once. Our
method includes result expressions, and handles aliasing cor-
rectly.

Areas of future work include adding support for multi-
threaded computation, ending the maintenance of queries
that are no longer useful to the program, and increasing the
kinds of queries that our method can automatically incre-
mentalize.
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